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Preface

The 2025 Annual Research Report describes the research conducted at the Center for Naval Re-
search and Education (CNRE) at the University of Michigan in the past year. CNRE is supported
by the Office of Naval Research under Grant N00014-24-1-2013 with the goal of conducting fun-
damental research into naval- and marine-relevant S&T problems, while training capable future
generations. Our research program reflects the cutting–edge and multi-disciplinary nature of such
problems and brings together researchers with a wide range of skills to work on them. This year’s
program includes challenging problems in the areas of complex hydrodynamics and flow control,
electromagnetics, advanced materials, data-augmented modeling, biofouling, marine energy, shape
optimization, machine learning and data assimilation, and physics–based modular construction for
ship building. The year’s cohort included 15 postdoctoral researchers and senior graduate students
mentored by faculty from the Aerospace, Electrical Engineering and Computer Science, Materials
Science, Mechanical, and Naval Architecture & Marine Engineering departments. Engagement dur-
ing education is an important aspect of our research and I would like to thank the approximately
25 members of NSWC, Carderock, NRL and ARL for their collaboration and active interest in our
activities. A brief summary of the assembled articles follows.

Lithium solid state batteries are central to electric shipping and sophisticated modeling method-
ologies for their physical behavior are explored. Surge wave energy converters are a means to harness
wave energy, and a general framework for optimizing their performance that also considers sub-
system interactions is studied. What will materials of the future be like? Advanced materials are
explored by the use of kirigami to develop novel compliant mechanisms and surfaces with unique
fluid-surface interaction properties. Can physical principles inform construction approaches? A
novel Six-S-Principle Methodology is studied alongside Generative AI towards developing modular
construction strategies for ship building.

Underwater vessels can puzzlingly, display highly asymmetric flow fields that influences their
resulting loads. Global stability analysis is shown to reproduce this behavior and is used to explain
the source of asymmetric behavior and its dependence on angle of attack. Efficient methods are
developed to model the scattering of electromagnetic waves from the ocean surface. Biofouling is
inevitable during marine operation and causes increased resistance, fuel consumption and mainte-
nance costs. The mechanisms by which biofilms cause drag are experimentally explored using both
live species and synthetic replicates, and a novel simulation approach is developed. An experimen-
tal study examines surface roughness as a means to control the flow around pitching hydrofoils.
Cavitation can be very noisy and requires very large computational grids to directly capture the
lowest pressures that drive inception. A novel subgrid model is developed that reliably predicts the
inception on significantly smaller grids without directly capturing the lowest pressures thus making
practical predictions feasible.

Can machine-learning assist in developing multidisciplinary optimization methodologies of the
future? Deep reinforcement learning approaches are explored alongside gradient-based approaches
to develop optimal hydrofoil shapes in the multi-phase regime. The simultaneous assimilation of
experimental and simulation data opens up exciting possibilities in how future simulations are con-
ducted and experimental measurement techniques are developed. A novel adjoint-based approach
is developed for complex geometries and large-scale data. Also, a machine-learning based ap-
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proach is used to predict the pressure field from coarse Lagrangian velocity data. Can high-fidelity
experimental and simulation data enable the development of improved lower-fidelity models? A
systematic methodology for developing data-driven turbulence models is studied.

The 2025 Annual Research Report also describes proceedings of the 2025 Undergraduate Sum-
mer Research Program that extended from May 27 to August 7, 2025. A total of 13 undergraduate
students were mentored during summer by postdoctoral researchers, senior graduate students and
faculty alongside 15 collaborators from NSWC, Carderock on problems related to the core CNRE
research described above. The entire team was composed of members from Mechanical, Electrical,
Aerospace, NA&ME, Computer Science and Math departments. In addition to biweekly meetings,
Carderock engineers made presentations to the students and postdoctoral researchers as part of a
My Path To The Navy series. The energetic undergraduate cohort was educated on cutting–edge
naval and marine problems and conducted research using state of the art approaches. An exciting
ten weeks culminated in a well–received final presentation workshop. Seven conference abstracts
and three paper submissions have already resulted from their summer research.

This research report is CNRE’s first such annual report. I would like to acknowledge Katie
Klink for her help in designing the cover page of the report. A big thank you also goes to Mehedi
H. Bappy, Divyanshu Gola, András Szabó, Gao Jun Wu and Xianzhang Xu for their considerable
and cheerful help in proofing and compiling the report. Finally, I am grateful to all members of
the CNRE team for their efforts that made the reported work possible!

Krishnan Mahesh
November 15, 2025
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Phasefield and Mesoscale Modeling of Anode
Voiding in Lithium Solid State Batteries

Andrew Li & Venkat Viswanathan

Solid-state batteries have shown great potential as a next-generation technology for deliver-
ing higher energy density with greater safety than existing Li-ion battery technologies. How-
ever, their applicability is still severely hindered by interfacial instabilities such as Lithium
dendrite formation and anode-electrolyte delamination through interfacial void formation.
While there is a growing body of experimental and modeling work on this topic, the exact
underlying mechanisms are still highly contested. Modeling works ranging from atomistic to
mesoscale models disagree on the roles of flux focusing, point defect diffusion, and mechan-
ical deformation, as well as the role of impurities and surface geometry. While much work
has been done to characterize the mechanical properties of Lithium polycrystals and bulk
diffusion behavior in Lithium single crystals, the contributions of Lithium self-diffusivity
on void coalescence is still hotly contested. We believe that to resolve these fundamental
issues, we must develop a more rigorous and flexible formulation of the governing equations
at the mesoscale to capture the complex electro-chemo-mechanical behavior. In this report,
we will provide an update on our development of a baseline phase field model which, inves-
tigates the electrochemical contributions more carefully through free energy considerations,
reproduces key features of known voiding processes at the electrode-electrolyte interface,
and allows for the incorporation of more complex geometries and contact angle effects down
the line.

Keywords: phase field, solid state batteries, Lithium, voiding

1.1 Introduction
One of the reasons utilization of Lithium (Li) anodes in solid state batteries remain highly chal-
lenging is its poor cycling behavior due to Li-solid electrolyte interface degradation (Barai et al.,
2024). In particular, there has been growing recognition of the role of void formation at the Li-solid
electrolyte interface, which can result either in a highly resistive interface due to excessive contact
loss/delamination, or create inhomogeneities/current hot spots which promote dendrite growth
during cell cycling, as depicted in Figure 1.1.

To capture the effects of anode voiding, there is a growing number of multi- and meso-scale
models which aim to capture the void initiation and growth behavior in Li anodes at the Li-solid
electrolyte interface. At the continuum level, it is hypothesized that void formation could be
dominated by various mechanisms, including vacancy coalescence (Barai et al., 2024), flux focusing
(Yoon et al., 2025), creep deformation (Agier et al., 2022), and impurity buildup (Shishvan et al.,
2024). Finally, there is active development of multi-scale models, where density functional theory
(DFT), molecular dynamics (MD), and continuum models are linked together to provide better
quantitative estimates (Feng et al., 2024).

Despite all these efforts, there is still a considerable gap between experimental and modeling ef-
forts, with a wide range of predictions and disagreements on proposed mechanisms (Shishvan et al.,
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Figure 1.1: Schematic depiction of a Li solid state battery and voiding induced failure. a) Schematic of a full solid
state battery with Li anode, solid electrolyte, cathode, and current collectors. Reproduced from Ahmad et al. (2022).
b) Depiction of how voiding at the Li-solid electrolyte interface can promote dendrite growth. As the cell is stripped
(Li removed from the anode region), an initially pristine Li-solid electrolyte interface begins to develop voids. The
formation of voids result in an uneven current distribution during the plating process (Li being deposited onto the
anode), which can result in dendrite formation at current hot spots.

2024). This likely arises from the complex Li anode microstructure evolution during cell production
and operation (Shishvan et al., 2024; Milan and Pasta, 2022), making a direct translation of quanti-
ties from the nano- to meso-scale highly challenging. Authors have argued that flux focusing based
on standard Butler-Volmer dynamics (Krauskopf et al., 2019) is insufficient to account for void
formation (Agier et al., 2022), creep deformation around impurity particles (Shishvan et al., 2024;
Shojaei et al., 2025) is unable to sustain stable voids and is inconsistent with pristine interfaces
observed after cycling (Barai et al., 2024), and vacancy coalescence lacks a thermodynamic driving
force after accounting for electrode thinning (Shishvan et al., 2023).

In contrast to Lithium deformation mechanics which, has been extensively characterized (LeP-
age et al., 2019), models for void formation based on vacancy diffusion have been treated largely
on a phenomenological basis (Barai et al., 2024), where the choice of the free energy is assumed to
be sufficiently captured by a quartic form, i.e.,

F =
ˆ
Aϕ2 (1−ϕ)2 + 1

2κ(∇ϕ)2dV, (1.1)

where the first term, which is the bulk free energy contribution, contains a fitting parameter A
that is not physically motivated, and the spinodal and binodal points are fixed by the polyno-
mial expression, and the second term is the gradient term related to surface energy contributions.
Combined with Butler-Volmer dynamics and creep deformation, these models have captured more
intricate interactions of electro-chemo-mechanical models.

We instead argue and present some early results on how a more rigorous formulation of diffu-
sion based contributions to Li anode voiding can be achieved by developing a phenomenological
Cahn-Hilliard Stokes type model, similar to that of Barai et al. (2024), but with a more careful
analysis of the free energy, allows us to estimate temperature dependent behaviors coming from
the chemical contributions, and derive a reduced order model for contact loss time evolution un-
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der clearly specified simplifying conditions that can be systematically generalized. In addition, we
briefly discuss how void stabilization via mechanical feedback (Mosleh et al., 2025; Barai et al.,
2024) can arise from a replenishment current contribution due to creep (Feng et al., 2024).

1.2 Free energy and spinodal points
Various authors (Barai et al., 2024) have argued that diffusion behavior dominates the void forma-
tion process, although arguments based on coalescence energy barrier have also been made against
this claim (Agier et al., 2022; Shishvan et al., 2023, 2024). While the microscopic picture is likely
vastly more complicated, such as in the case of voids in semiconductor connects (Yu et al., 2009),
the objection (Shishvan et al., 2023) against a vacancy coalescence model ultimately relies on an
ideal solution model that neglects vacancy-Li interactions, which cannot be sustained when strip-
ping can result in highly non-equilibrium vacancy concentrations near the Li-electrolyte interface.
Instead, equilibrium vacancy concentration typical of metals, which are on the order of parts per
hundred thousand/million, suggests that the free energy of a Li-vacancy system is instead highly
non-convex, and the high dimer and trimer formation energies noted in literature (Shishvan et al.,
2023) reflects a free energy with strong vacancy concentration dependency, or equivalently, highly
separated binodal points for a standard phase separating binary system (in terms of normalized
concentration).

Therefore, we take a more coarse-grained approach by considering how to choose a free energy
model that is self-consistent with the above-mentioned issues. In general, the total free energy
of the system can be obtained as the sum of the bulk Li free energy and a gradient energy term
estimated from the Li-void interfacial energy based on Molecular Dynamics (MD). Current phase
field models (both conserved and nonconserved dynamics driven) utilize the quartic free energy
formulation as Eq. (1.1), which benefits from improved numerical stability (Shojaei et al., 2025)
and has an analytically well-known interface behavior. However, we argue that the voiding onset
is better captured by a regular solution model (and generalizations via RK polynomials (Yao and
Viswanathan, 2024)) where one minimum corresponds to the equilibrium vacancy concentration in
Li metal, i.e.,

Freg [ϕ] =
ˆ [

RT
(
ϕ lnϕ+(1−ϕ) ln(1−ϕ)

)
+αϕ(1−ϕ)+ 1

2κ(∇ϕ)2
]

dV , (1.2)

where α is the interaction strength and κ is the interfacial energy. As shown in Figure 1.2, this
is usually not considered as the free energies appear to closely resemble each other with the same
extremas. However, a key distinction between the regular solution formulation in Eq. (1.2) and
quartic free energy in Eq. (1.1) is the position of the spinodal points, which is considerably closer
to the binodal points for the case of a regular free energy model.

Recall the spinodals are given by

{ϕs |
δ2F

δϕ2 (ϕs,∇ϕ= 0) = 0}. (1.3)

Therefore, the quartic free energy function f(ϕ) = A(c−ϕa)2(ϕ−ϕb)2, where ϕa and ϕb are the
binodal points, have

ϕqs = 1
2

(
ϕa +ϕb±

1√
3
|ϕa−ϕb|

)
, (1.4)

where the subscript qs denotes the spiniodal of the quartic free energy, which does not account
for any shift in the spinodal position due to the changes in temperature. The onset of voiding,
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Figure 1.2: Comparison of three free energy models which have the same free energy barrier and binodal points near
Li fractions at 0 and 1. Greg is a regular solution model, Gexp uses an exponential function as a basis (Shojaei et al.,
2025), and Gquart is the quartic free energy used in standard phase field models. Despite having (nearly) the same
extrema, the spinodal points differ considerably among the three, which shows that a free energy model must be
selected carefully for predicting the onset of interfacial voiding, even though simulations may be run with reasonable
accuracy after the void onset/nucleation event using more stable free energy choices.

or equivalently the spinodal point is therefore predicted to be the same across all temperatures
at ϕqs ≈ 0.211 and 0.788. On the other hand, for the regular solution free energy model, where
f(ϕ) =RT (ϕ lnϕ+(1−ϕ) ln(1−ϕ))+αϕ(1−ϕ), the spinodals are naturally given by the interaction
strength α and temperature T ,

ϕrs = 1
2

1±
√

1+ 2RT
α

 , (1.5)

where the subscript rs denotes that these are the spinodal points in the case of the regular solution
model. This shows that, in the limit of diffusion dominated voiding, assuming that reaching the
spinodal point is what induces void formation at the interface, the critical current grows as a
function of temperature, which can be used to verify if the measured open circuit voltage/critical
capacity is consistent with a diffusion based model of this form in low pressure conditions where
diffusion is expected to be dominant instead of mechanical creep.

Next, consider spinodal points for binodal points close to 0 and 1, which is the case for Li-
vacancy phase diagram, where the binodal point close to 1 represents Li concentration with a very
small vacancy equilibrium fraction (10−7), While the binodal points do not change noticeably as Li
and vacancies can be treated as nearly immiscible species, based on Eq. (1.5), the spinodal points
strongly depend on temperature as

∂ϕrs

∂T
= R

α
√

1+ 2RT
α

=±R
α

(
1− 2R

α
T +O

(
T 2
))

. (1.6)

In other words, the spinodal points are predicted to drift apart nearly linearly in the temperature
region of interest (near room temperature). Assuming voiding formation at the Li-electrolyte
interface occurs when the spinodal point is crossed, an increase in temperature improves the critical
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stripping current density as the spinodal point shifts towards lower Li concentration/higher vacancy
concentration.

1.3 Basic formulation
We begin with the basic phase field model component in the Li anode region/bulk, where the
Li phase is given by ϕ ∈ [0,1], the normalized concentration. The void formation process, in the
absence of mechanical deformation, is assumed to follow Cahn-Hilliard (CH) dynamics,

∂ϕ

∂t
=∇·D(ϕ)∇(µ(ϕ)−κ∇2ϕ), (1.7)

where D(ϕ) is the diffusivity, µ(ϕ) is the chemical potential, and κ is the gradient energy coeffi-
cient. This formulation is chosen as the CH equation has been successfully utilized in modeling void
formation due to electromigration (Mahadevan and Bradley, 1999; Bhate et al., 2002) and Kirk-
endall effects (Werner and Weinberg, 2017). Mechanical contributions can be included by adding
an advection term such that the time evolution is given by the Cahn-Hilliard-Stokes (CH-Stokes)
dynamics,

∂ϕ

∂t
=∇·D(ϕ)∇(µ(ϕ)−κ∇2ϕ−ϕv), (1.8)

where v is the local lattice velocity due to mechanical deformation (e.g. creep (Barai et al., 2024)),
which is introduced to capture the creep-induced void healing/annihilation process, and a more
quantitative model can be found in existing literature (Barai et al., 2024). In the initial simulations,
we are treating it as a constant field for simplicity, as the void stabilization effects can already be
captured in this manner, and benchmarks with more detailed mechanical coupling following Barai
et al. (2024) is currently being developed.

This basic CH-Stokes equation is then coupled to standard Butler-Volmer (BV) dynamics at the
electrode-electrolyte interface and used to understand basic properties of electrochemically induced
voiding.

1.4 Bulk versus surface diffusivity
An important aspect we have not yet discussed in the matter of Li (self-)diffusivity. While we have
assumed the diffusivity to be constant in the previous cases, the diffusivity term D(c) can play a
crucial role in the determination of the void shape (Barai et al., 2024), as a larger bulk diffusivity
contribution allows for a redistribution of vacancies in the anode bulk to reduce the bulk free energy,
whereas a larger surface diffusivity allows for rapid vacancy redistribution at the anode interface to
minimize the surface energy, and together determine the shape of the void. Moreover, sufficiently
large surface diffusivity and low bulk diffusivity, for example, frequently seen during CVD of III-V
semiconductors, can essentially be used to model surface rearrangements dominated by surface
diffusion. In this case, we will assume that the surface diffusivity is much greater than the bulk
diffusivity (Ds≫ Db), and express the effective Li diffusivity in the anode as an interpolation of
the bulk and surface diffusivity, i.e.,

D(c) = h(c)Db +(1−h(c))Ds, (1.9)

where Db and Ds are the bulk and surface diffusivities respectively, and h(c) is an interpolation
function, which, following Zhao et al. (2022), we model as

h(c) = c3(6c2−15c+10), (1.10)

5



Phasefield and Mesoscale Modeling of Anode Voiding in Lithium Solid State Batteries

although the choice is by no means not unique.
Finally, to incorporate adhesion energy between Li and solid electrolyte, we introduce, following

Yu et al. (2012) and Warren et al. (2009), the contact angle effect, which is given at the boundary
(with orientation n̂) by the condition

∇c
|∇c|

· n̂=−cosθ (1.11)

at the triple junction between void, Li metal phase, and the electrolyte surface.
The slowdown in void formation due to creep-induced flux has already been systematically

investigated in the previously mentioned works. Before we can rigorously prove that the creep
flux, which requires a well-defined incompressible model, and the Cahn-Hilliard equation, where
concentration variations exist, following (Feng et al., 2024), we will simplify the creep flux as a
power law creep with a constant lattice drift velocity in the form of

v · êy = ε̇= σmAc exp
(
− Qc

RT

)
, (1.12)

where the applied strain rate is given by a power creep law. The reader interested in a more
accurate mechanics modeling is referred to LePage et al. (2019), but should note that models
coupling information from the deformation map and phase fields may exhibit various unphysical
phenomena that must be carefully checked against.

Finally, note that the current is modeled with Butler-Volmer kinetics at the Li-electrolyte
interface, where the Li-ion concentration in the electrolyte is assumed to be at steady state since
most solid electrolytes of interest are chosen for high Li-ion conductivity and selectivity, and thus
not modeled explicitly. This is a reasonable simplification for the case of voiding, but it may not
be suitable for the case of dendrite growth, which we are not investigating yet.

1.5 Introduction to smoothed boundary method
As the smoothed boundary method (SBM) is not widely used outside of the phasefield community,
we provide a brief description of its relevant formulation such that the next section is more tractable.

Consider a domain Ω. We can associate an indicator function I such that

I(r) =

1 r ∈ Ω,
0 r /∈ Ω.

(1.13)

The smoothed boundary method, as the name implies, smooths the boundary by replacing the
indicator function with a smooth function ψ such that

(ψ(r),∇ψ)≈ (1,0) r ∈ Ω,
(ψ(r),∇ψ)≈ (0,0) r /∈ Ω.

(1.14)

In the 1D case, we can replace the indicator on the interval [0,1] with the smoothed domain
order parameter ψ

ψ(x,x0,L,ϵ) = 1
2(1+tanh(L− (x−x0)

ϵ
)(1+tanh(x−x0

ϵ
)), (1.15)
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where x0 and L determine the domain size, and ϵ determines the boundary width that can be set
to a small value depending on the resolution of interest (e.g. ϵ ≈ 0.001 for a normalized domain
size of 1).

Associated with this domain order parameter is the normal vector, which is given by

n̂ = lim
ϵ→0

∇ψ
|∇ψ|+ ϵ

, (1.16)

where an infinitesimal value ϵ→ 0 term is introduced. The small value, which is strictly 0 for
mathematical purposes, is set to be some floating number (ϵB ≈ 10−16), and acts as a numerical
stabilization term.

It is evident that many complex domains can be accurately modeled with this domain order
parameter up to an interfacial skin region/width of ϵB, and several cases have been tested rigorously
by Yu et al. (2012). This is the main limitation of this approach, as ϵB should be set as the smallest
lengthscale in the system to avoid non-physical effects that come from the artificial interfacial layer.

Once the domain order parameter is defined, we can associate with it various types of bound-
ary conditions (BC). This is achieved by leveraging two standard calculus identities, which we
demonstrate for the Neumann and contact angle BC. The Dirichlet BC is similarly derived.

Finally, we note that in order to maintain numerical efficiency while balancing the need for finer
mesh near boundaries, we utilize adaptive mesh refinement (ADR) as shown in Fig. 1.3.

Figure 1.3: A zoomed in view of (part of) a simulation domain. Adaptive mesh refinement is applied automatically
near regions with higher spatial variations of the simulation field, and the remaining domain can be efficiently
simulated with just a coarse mesh.

1.6 Smoothed boundary based implementation
In this section, we provide a more detailed derivation that has been developed for the CH-Stokes
equation with the inclusion of the contact angle effect to represent the interfacial adhesion energy
between Li metal and different choices of electrolyte, as well as electrostatics for the reaction kinetics
governed by Butler-Volmer kinetics. This derivation is based on the smoothed boundary method
developed by Yu et al. (2012), which shows great promise for the simulation of more complex
interactions down the line.

The first identity we make use of is that for a scalar field H,

ψ∇2H =∇· (ψ∇H)−∇ψ ·∇H. (1.17)
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The Neumann BC at a boundary with normal vector n̂ is given by

j · n̂ = Jn, (1.18)

where Jn is a scalar. Substituting Eq. (1.16) into Eq. (1.18) gives the smoothed boundary version
of the Neumann BC as

Jn = ∇ψ
|∇ψ|

· j. (1.19)

For the case of a general conserved dynamics for scalar field ϕ,

∂ϕ

∂t
=−∇· j. (1.20)

Multiplying the equation by the domain order parameter and rearranging the terms gives

∂ϕ

∂t
=− 1

ψ
∇·ψj+ |∇ψ|

ψ
Jn. (1.21)

Note that the derivation for the Neumann condition is true for both the case of non-phase-separating
diffusion and phase-separating diffusion in the Cahn-Hilliard (CH) equation. In addition, adding a
velocity term, as in the case of the Cahn-Hilliard-Stokes equations, does not affect this derivation
either. However, for the CH equation, which is a 4th order PDE, an additional contact angle
constraint can be specified. This is most evident when we express it as a coupled PDE through the
mixed formulation.

∂c

∂t
=∇·D∇µ,

µ= f(c)−κ∇2c.
(1.22)

A classic set of boundary conditions is the double Neumann BC, which is given by

∇c · n̂ = 0,
D∇µ · n̂ = 0.

(1.23)

The second equation in Eq. (1.23) is easy to understand, as it is the same no flux condition we
see in the diffusion equation. The first equation corresponds to a contact angle condition, which is
easy to implement as a Neumann boundary condition for the θ = 90◦ case, but is in general more
difficult to express, as exemplified by Warren et al. (2009), as a standard implementation requires
the introduction of a delta function in the free energy functional. The SBM approach recovers the
same expression with what effectively is a smoothed approximation to the delta function, which we
detail as follows.

Consider an anode/matrix phase, with a single void/precipitate phase located along one of the
boundaries. The triple junction (where the matrix, precipitate phase, and the boundary meet) is
characterized by the wetting/contact angle θ, which is experimentally measurable and reflects the
relative attractive/adhesive force of the two phases with respect to the boundary. Ignoring the
boundary for now, the free energy of the system is given by

F =
ˆ [

f(ϕ)+ 1
2κ |∇ϕ|

2
]

dV, (1.24)

where the equilibrium condition requires that

δF

δϕ
= 0. (1.25)
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In terms of the chemical potential, we therefore have

∂f

∂ϕ
−κ∇2ϕ= 0. (1.26)

Multiplying both sides by ∇ϕ, we have

∂f

∂ϕ
∇ϕ= κ∇2ϕ∇ϕ, (1.27)

or, equivalently,
∇
(
f − 1

2κ(∇ϕ)2
)

= 0. (1.28)

Therefore, without loss of generality, we may express

|∇ϕ|=
√

2f/κ, (1.29)

which is the boundary on the magnitude of the gradient of ϕ. Recall next the contact angle
condition is

n̂ · ∇ϕ
|∇ϕ|

=−cosθ, (1.30)

where θ is the contact angle of the Li metal. Substituting Eqs. (1.16) and (1.29) into Eq. (1.30),
we have

∇ψ ·∇ϕ=−|∇ψ|cos(θ)
√

2f
κ
. (1.31)

Analogous to the case of the Neumann BC, multiplying the chemical potential by the domain order
parameter ψ and rearranging terms gives

µ= ∂f

∂ϕ
− κ

ψ
∇· (ψ∇ϕ)+ κ

ψ
∇ψ ·∇ϕ, (1.32)

which, substituting into Eq. (1.31), gives

µ= ∂f

∂c
− κ

ψ
∇· (ψ∇c)− |∇ψ|

ψ

√
2fκcosθ. (1.33)

Finally, the electrical potential in the anode and electrolyte bulk are given by

∇·σ∇ϕ= 0, (1.34)

with the reaction current at the anode-electrolyte interface as a boundary term. This can be
expressed using SBM as a single equation

∇·
(
ψκ(c,ψ)∇Φ

)
=−|∇ψ|Jn. (1.35)

Similar derivations can also be found in Goel et al. (2022) and Hong and Viswanathan (2018). On
the other hand, the reaction current Jn follows a simple Butler-Volmer expression in Eq. (1.36),
where η = ϕs−ϕe−ULi is the overpotential, although more quantitative models including stress-
induced electrochemical potential terms can be included as needed.

Jn = J0

(
exp

(
−α η

RT

)
− exp

(
(1−α) η

RT

))
. (1.36)
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Phasefield and Mesoscale Modeling of Anode Voiding in Lithium Solid State Batteries

1.7 Numerical results

In this section, we provide some preliminary examples of simulation results for modeling void growth
at the Li-solid electrolyte interface. This first set of simulations are run with the constant velocity
term, and the Li anode domain shown in Fig. 1.4 and its boundary conditions are enforced using
the smoothed boundary method as detailed in the earlier sections. A random point was chosen
for a nonuniform current stripping to occur at the Li-electrolyte interface, which is the bottom
edge of each of the simulated domains. As the stripping continues over time (from left to right),
it can be observed that a red region, corresponding to the voiding region, appears at the interface,
resulting in contact loss/delamination in both cases a) and b), corresponding to without and with
a replenishment current from creep and a lattice shift of the Li anode.

Despite the simplicity of the simulation, we see that 2 key qualities are captured. 1. There is
no significant flux from the bottom to the top of each domain, indicating in the case of vacancy
coalescence induced voiding, after the critical current density is reached, the replenishment current
from Li diffusion originating from the interior of the anode barely contributes to the dynamics.
Instead, diffusion appears to play the role of surface rearrangement of atoms. 2. The replenishment
current from either creep/lattice shift can significantly reduce the rate of void formation, even
completely stopping them for sufficiently strong mechanical feedback, which can give rise to a
critical/maximum void size in steady state.

Figure 1.4: Comparison of phase field simulation results. Bottom boundary indicates the Li-electrolyte interface. In
a) a constant stripping current density is applied, resulting in the continuous growth of a void. In b) A constant
stripping current density, coupled with replenishment current from lattice velocity induced by the creep flow, results
in a void that is stable in size and does not lead to full delamination.

In another set of simulations we investigated the effects of surface energy contributions of the
Li-void region. For each of these simulations, the void surface area, which can be defined from
the average concentration of Li at the anode-electrolyte interface, are plotted as a time series with
some typical shapes shown in Fig. 1.5. Under constant stripping (galvanostatic) conditions, our
simulations show that key characteristic results such as an initial period with relatively stable
contact until the onset of voiding, a growth period with a sudden increase in void growth rate,
and a gradual slowdown in void growth rate (which can eventually result in stable voids that stop
growing), are all successfully captured.
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Figure 1.5: Normalized contact loss evolution of several simulations under various gradient energy coefficients k,
which represent the Li-void surface energy. Sufficiently small gradient energy result in earlier onset of the voiding
process, but increasing the gradient energy only slows down the voiding process marginally as the effect saturates.
In all simulations the void growth process shows an initial stage where contact is well maintained with little to no
void growth, an initial rapid increase, and a gradual slowdown which can taper off and eventually stop.

1.8 Conclusion and next steps

Having captured the basic properties of the voiding process at the mesoscale as discussed in the
previous section, we are now working towards a multiscale model of the voiding process. On one
hand, we are incorporating information from DFT and MD simulations to provide better estimates
for diffusivity and free energy contributions to the Li-vacancy diffusion process, which play critical
roles in the onset of the voiding process. A major consideration is the incorporation of grain
boundary effects, where our experimentalist collaborators have demonstrated texturing (i.e., the
various crystalline grains of the Li anode synchronization in a preferred orientation) due to the
calendaring process involved in anode manufacturing, which we propose can affect the critical
current density at which voiding occurs.

On the other hand, the morphological instabilities observed at the interface, which suggests that
the voids can be very shallow, suggests a simplification at the mesoscale, where we can treat the void
region as a 2D instead of 3D domain, and investigate intriguing temporal and spatial instabilities
that can be observed experimentally in either coarse-grained measurements such as open circuit
voltage as a function of stripping current and time (and modeled as highly out-of-equilibrium
dynamical systems), and more fine grained direct observation through cryogenic computerized
tomography scans (cryo-CT).
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Improvement of Hydrodynamic Properties using
Kirigami Patterns & Organic Vapor Jet
Deposited Coatings

Daniel Esterkin, Morgan Pen1, Joshua Behringer2, Eva Pontrelli, Lokesh
Silwal, Ryan Harber1 & Max Shtein

Traditionally, kirigami is a Japanese art of cutting paper. It affords a means of transforming
a two-dimensional sheet into three-dimensional shapes with novel properties, which our
team has leveraged to create novel compliant mechanisms and surfaces with unique fluid-
surface interaction (FSI) properties. At present, the understanding of the relationship
between cut topology and resulting properties is rudimentary / mostly phenomenological,
and predictive models are challenging to develop and validate. This project focuses on
creating libraries of kirigami structures, characterizing their FSI, and providing a basis for
training AI models in subsequent prediction and optimization of kirigami-enabled, novel
modes of FSI.

Keywords: kirigami, flow control, vapor jet coatings

2.1 Introduction
Kirigami is the Japanese art of cutting and folding paper to create different patterns that often
contain three-dimensional (3D) features. Kirigami has become increasingly relevant in the fields
of 3D microfabrication and nanofabrication because of its ability to create flexible, reconfigurable,
and diverse designs by a relatively straightforward application of 2D patterning technologies and
thin-film materials developed for other fields in recent decades (Chen et al., 2020; Jin and Yang,
2023). In this work the advantages of kirigami were leveraged to create thin conformal layers
that attach to solid surfaces to control their fluid interactions. Beyond just changing how surfaces
interact with fluids, the kirigami sheets can house monolithically integrated sensors that measure
useful quantities from the fluid, such as pressure and shear forces, creating a single device that both
influences surface fluid interaction and measures it.

2.2 Kirigami as a flow control mechanism
In this work, kirigami patterns were designed to be placed over rigid hydrofoils to improve their
hydrodynamic properties. When a rigid body such as a sphere moves through a fluid medium,
it creates a pattern of vortices behind it known as a von Karman vortex street shown in Figure
2.1. This vortex street consists of alternating vortices on both sides of the sphere. For an object
like the sphere, these vortices decrease the wake flow momentum of the object, thus creating drag.
For an object like a flapping fin the spin is in the opposite direction, and instead of creating drag

1University of Michigan, Ann Arbor, MI
2Greenhills High School, Ann Arbor, MI
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they create a velocity surplus by increasing the wake flow momentum (Figure 2.1) (Bianchi, 2023;
Hosseinjani and Ashrafizadeh, 2015). We set out to explore the possibility of improving the velocity
surplus via the reverse von Karman Effect by attaching kirigami patterns to a flapping fin, thereby
creating more thrust than would be created by a smooth fin.

Figure 2.1: von Karman and Reverse von Karman Effect (Bianchi, 2023).

Choosing kirigami patterns

Inspirations for the designs of kirigami patterns that improve the reverse von Karman effect were
taken from various aquatic lifeforms, some of which have been observed and/or theorized by prior
studies to utilize these principles of action, and link them to certain surface topologies. One of the
first designs created was made to mimic the pattern of fish scales (Figure 2.2).

Figure 2.2: Kirigami pattern consisting of repeated, curved cuts, each spanning 120 degree arcs.

In addition to fish scales, shark denticles are another natural structure studied for their hydrody-
namic properties. Shark denticles owe their favorable hydrodynamic properties to small undulating
surface protrusions called riblets (Ao et al., 2021) (Figure 2.3), which have been shown to both
increase lift and decrease drag, with drag reductions reported to be up to 18.6% (Pu et al., 2016).
Riblets do this by changing the turbulent boundary layer which describes how flow is either laminar
or turbulent when getting close to a solid surface (Zhao et al., 2012; Landau and Lifshitz, 1987).
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Figure 2.3: SEM image of shark denticles (Pu et al., 2016).

Various kirigami patterns

Figure 2.4: ‘Rectangular’ kirigami structure cut from Kapton polyimide film: (a) unstretched pattern, (b) stretched
pattern.

Preliminary designs were cut from kapton polyimide film (Figures 2.4, 2.5). Later designs were
cut from PET plastic film that better emulate the riblets observed in shark denticles (Figures 2.6,
2.7, 2.8). These structures generate a 3D profile that in principle can force flow into a turbulence
pattern of counter-rotating longitudinal vortices, whose characteristic size and energy is jointly
determined by the flow velocity, surface pattern, and mechanical compliance of the surface elements.

Methods

All kirigami designs were laser cut using a Universal Systems VLS3.50 CO2 laser cutter system.
Patterns were designed using Solidworks 2015 software and cut inside of a nitrogen environment.
Films cut from PET plastic and kapton polyimide film were 100µm thick.

The kirigami patterns were tested by attaching them to both sides of a 3D printed hydrofoil
with tape. This hydrofoil was then attached to a motor used to actuate it and placed inside a water
tank. The water tank was filled with IR sediment, and motion inside the tank was recorded using
a high speed camera which tracked the IR sediment’s movement. By tracking the movement of the
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Figure 2.5: ‘Unequal Arcs’ kirigami structure cut from Kapton polyimide film: (a) unstretched pattern, (b) stretched
pattern.

Figure 2.6: ‘Trapezoidal’ kirigami structure cut from PET plastic film: (a) unstretched pattern, (b) stretched pattern.

IR sediment, the vortices produced by the hydrofoil’s flapping can be measured in quiescent flow.
The tests of all kirigami patterns were completed in collaboration with Prof. Anchal Sareen’s group
at the University of Michigan, in particular with the help of Dr. Lokesh Silwal of Prof. Sareen’s
group. Prof. Sareen’s group also provided the hydrofoil and constructed the accompanied testing
apparatus. Figure 2.9 shows both the testing apparatus and the hydrofoil.

Results and discussion

Testing of the kirigami patterns inside of the quiescent flow chamber determined that the presence
of a kirigami pattern on the hydrofoil positively affected its hydrodynamic properties. So far only
the 120 degree circular arcs kirigami pattern has been tested. In these preliminary tests, it appears
that for the same experimental parameters, the maximum velocity of the vortices was higher when
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Figure 2.7: ‘Pointed Ridges’ kirigami structure cut from PET plastic film: (a) unstretched pattern, (b) stretched
pattern.

Figure 2.8: ‘Honeycomb Trapezoidal’ kirigami structure cut from PET plastic film: (a) unstretched pattern, (b)
stretched pattern.

the kirigami pattern was attached, compared to that of the smooth foil. This difference can be
seen in Figure 2.10. Figure 2.11 shows the qualitative differences in flow field with and without the
kirigami pattern attached to the hydrofoil. Additional experiments on these and other patterns are
planned to better quantify and understand the observed behavior, and to identify opportunities for
functional optimization.
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Figure 2.9: (a) Quiescent flow testing apparatus, (b) 3D printed hydrofoil.

Figure 2.10: Measured velocities with kirigami pattern attached to hydrofoil and without.

Figure 2.11: (a) Qualitative flow field without kirigami pattern attached. (b) Qualitative flow field with kirigami
pattern attached.

2.3 Kirigami sensors

In our previous work, kirigami substrates have been used to house strain sensors for wearable sensors
(Figure 2.12). Since strain measurements can often be transduced into pressure measurements
(Sharma et al., 1987), pressure sensing mechanisms could be placed on kirigami substrates such as
those used on the hydrofoil.
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Figure 2.12: (a) Full kirigami sensor patch with strain gauge. (b) Close view of strain gauge placement location.
(c) An example of a prior application of a sensor patch on a human shoulder, where movement of the arm can be
reconstructed from the locally detected strain signals.

Most commercial strain gauges are made of ultra-thin traces of a metal alloy of copper and
nickel called constantan (Millett et al., 1998). These strain gauges can be cumbersome and contain
large solder joints, making them difficult to integrate in a truly monolithic fashion. In applications
related to drag reduction and pressure sensing, these protrusions can affect surface-adjacent flow
and therefore introduce artefacts into the measured pressure fluctuations, for example. For this
reason, more conformal strain gauges would be desirable such as polymer strain gauges. To realize
thin, monolithically integrated, and flexible strain sensors, we have recently developed polymer-
based strain gauges, based on the ionically and electronically conducting polymer PEDOT:PSS,
which can be mixed with dopants to improve its conductivity and durability.

Figure 2.13 shows a PEDOT:PSS strain gauge deposited on a kirigami substrate through atom-
ized deposition on a kirigami substrate. Figure 2.14 shows the results of bending a PEDOT:PSS
strain gauge by hand.

Our next steps include testing the viability of a PEDOT:PSS strain gauge in naval applications,
where it can provide a means of measuring surface deformations and pressure fluctuations in the
boundary layer, while also being integratable with the kirigami and other surfaces and control
mechanisms.

Figure 2.13: PEDOT:PSS strain gauge deposited through atomized deposition on a kirigami substrate.

2.4 Organic vapor jet printing of hydrophobic surface coatings
Organic vapor jet printing (OVJP) was developed in the early 2000s for patterning organic semi-
conductors as a way of directly patterning the active layers and affords a higher material utilization
efficiency over other deposition and patterning techniques (Shtein et al., 2003; Sun et al., 2005). Va-
por jet printing has since been applied to active pharmaceutical ingredients to increase their surface
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Figure 2.14: Bending a PEDOT:PSS strain gauge by hand. Horizontal axis is measurements conducted at 96 Hz.
Vertical axis is modified voltage as a function of resistance, meaning an increase in the vertical axis corresponds to
an increase in resistance due to bending.

area to volume ratio, thereby increasing their dissolution rate (Figure 2.15) (Shalev et al., 2017).
Many of the molecular species being deposited can adopt highly irregular surface morphologies that
effectively trap air and hydrophobic properties. Together with the ability to deposit such coatings
in ambient conditions, this approach was attractive for testing its ability to reduce biofouling and
drag of marine surfaces.

Figure 2.15: (a) Scanning electron micrograph of organic vapor jet printed tamoxifen (10µm scale bar, insert: 2µm
scale bar) and (b) dissolution behavior of processed vs unprocessed tamoxifen. Reproduced from Shalev et al. (2017).

This coating technique involves heating an organic source material to produce vapor and using
an inert gas to carry the vapor away from the source and direct it as a high velocity jet onto the
target surface, where the organic material condenses (Figure 2.16).

Many small molecular organics are hydrophobic, and while OVJP can improve their wetting
and/or dissolution properties in some cases, in others, it can produce morphologies with added geo-
metric hydrophobicity. In this work, we attempt to coat hydrofoils with hydrophobic morphologies
to reduce drag.
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Figure 2.16: OVJP concept.

Figure 2.17: (a) Optical microscope image of organic vapor jet printed atovaquone with large (100s µm needles).
When the atovaquone deposit is submerged in water, (b) it holds an air pocket, and (c) is visibly dry after being
removed from the water.

Experimental setup

Figure 2.18 gives a detailed look at the OVJP apparatus. The nozzle replaces a standard extruder
block on a 3-D printer. The 3-D printer platform which allows motion in the x, y, and z directions.
The temperature of the nozzle is controlled by a heating block, in which two heating cartridges are
mounted. The thermocouple from the temperature controller is inserted, monitoring the evapora-
tion temperature. Nitrogen carrier gas is admitted at a rate controlled by a calibrated mass flow
controller. Inside the nozzle is the organic source mounted on the thermocouple housing.

Morphology control

Organic vapor jet deposited material is typically comprised of surface-bound micro or nano particles
which usually have needle-like (Figure 2.19, panels a and b) or spherical (Figure 2.19, panels c and
d) morphologies, depending on the material and deposition conditions.

Varying deposition parameters allows control of morphological features like needle size and
degree of branching. Figure 2.20 shows atovaquone deposited with different particle sizes and
amounts of branching.
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Figure 2.18: Schematic of organic vapor jet printing apparatus.

Figure 2.19: Scanning electron micrographs of organic vapor jet printed materials, including highly hydrophobic
compounds, such as: (a) atovaquone with relatively high mass per area, (b) atovaquone deposited at a lower surface
coverage, (c) griseofulvin.

Contact angle measurements

Vapor jet printed materials show significantly higher contact angles than flat samples of the same
material (Figure 2.21) for both spherical and needle morphologies. Contact angle measurements
were taken in Prof. Albert Liu’s Lab in the Chemical Engineering Department at University of
Michigan with assistance from Jae Wan Lee (Shtein Lab).

Hydrofoil coating

Small strips of indigo blue, approximately 1cm in width, were deposited on a 3D printed PLA
polymer hydrofoil (Figure 2.22) to determine if organic vapor jet printed material would display
poor wetting properties in situ, and if the films would be robust enough to undergo testing in the
setup described in section 2.3.

While as-deposited films showed significant water beading compared with the bare PLA surface
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Figure 2.20: (a - c) Scanning electron micrographs of atovaquone deposited with decreasing (left to right) nozzle scan
velocity, resulting in larger needle growth. White scale bars are 50 µm, black scale bars are 5 µm. (d - f) Scanning
election micrographs of atovaquone deposited with 1 (d), 3 (e), and 5 (f) passes of the nozzle over one location.
Increasing the number of passes leads to increased branching. White scale bars are 50 µm, black scale bars are 5 µm.

(Figure 2.23, panels a and b vs d), a film which had been gently wiped with a piece of tissue
showed only slight improvement from the bare hydrofoil surface (Figure 2.23. panel c vs panel d).
Repeatedly adding and removing water drops from the as deposited strip in panel a of Figure 2.23
resulted in drop appearance similar to that in panel c of Figure 2.23 after only 3 or 4 drops had
been added and allowed to roll away.

Freshly deposited films repelled water successfully, but particles washed away relatively quickly,
leaving a less hydrophobic surface behind. As-deposited films appear to have sub-optimal adherence
to withstand extended use at high flow velocity, and an adhesion promoting treatment and/or a
protective polymer coating should be attempted to strengthen the organic vapor jet printed material
and take advantage of the geometric hydrophobicity of the OVJP deposits. To this end, we may use
vapor jet-deposited parylene and other materials, where a surface polymerization reaction produces
a conformal and mechanically more robust coating.

2.5 Summary
Nature has evolved different strategies for controlling fluid-surface interactions that can benefit
US Navy capabilities. In this project, we are exploring two such strategies for reducing drag and
acoustic signatures: 1) easily manufactured surface textures that can trigger vorticity at certain
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Figure 2.21: Contact angle measurements for flat (left) vs. organic vapor jet printed material (center) with scanning
electron micrographs of the organic vapor jet printed material (right). The organic materials here comprised (a)
Sub-phthalocyanine chloride (Shalev et al., 2017) (b) griseofulvin, and (c) atovaquone.

length and energy scales, 2) easily applied surface coatings that have texture and composition that
effectively traps air and increases water contact angle.

How surface geometry influences FSI is currently only understood empirically, and prediction
remains elusive. We are using kirigami, a Japanese art in which a pattern of cuts in a 2D sheet
transforms the sheet into a 3D structure upon stretching. This allows for very fast, easy production
of patterns with systematic variation in feature size, shape, spacing, etc. This in turn allows us to
build a very large library of patterns with repeating 3-dimensional features, and test the samples
to catalogue their fluid surface interactions (FSI), forming the basis of a directed evolution-style
optimization approach. The catalogue of FSI, with the subset of desirable FSI, can then be used
to train a machine learning (ML) / artificial intelligence (AI) model to later help with the inverse
design problem, in which optimal geometries are suggested based on desired FSI. So far, we have
created dozens of patterns for the texture library, characterized their 2D and 3D transformations,
and began fluid dynamic testing. Initial results on some of the patterns have indicated substantial
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Figure 2.22: Strips of indigo blue deposited on a 3D printed hydrofoil. Left and right are relatively thick coatings,
center is a thinner coating, and the inset shows what the right strip looks like after gently wiping the deposit with a
bit of tissue (to mimic light mechanical agitation).

Figure 2.23: Drops of water on (a) a thick layer of indigo blue, (b) a thin layer of indigo blue, (c) a thick layer of
indigo blue wiped with a tissue, and (d) the bare surface of the 3D printed hydrofoil.

reductions in drag and noise under some flow conditions.
The second goal is to use geometrically hydrophobic coatings to trap an air barrier resulting

in reduced drag. This effect has been observed previously, except that practical means of coating
large surfaces at low cost with appropriately textured coatings are still lacking. Our lab has been
generating coatings by a dry, organic vapor jetting process, in which organic vapor is directed onto
a surface by a high speed inert gas, producing dense mats of micron-scale particles. The coating
conditions are modified to produce different morphologies, which in turn modify the contact angle.
Thus far, we have shown control over deposited morphology at ambient conditions, and observed
large increases in contact angle. We also began applying a protective barrier coating to increase
the durability of these coatings while maintaining the gains in contact angle.
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On the Optimal Performance of Oscillating Surge
Wave Energy Converters

Binh D. Truong & Lei Zuo

The sequential process is a conventional procedure in designing an ocean wave energy
converter, from mechanical systems to electrical loading. However, many studies do not
consider the reciprocal influences between the two domains. Therefore, the potential of a
wave energy converter has not been properly explored. In this paper, the performance of
an oscillating surge wave energy converter driven by regular wave excitation is investigated,
in which the dynamics of subsystems and their couplings are fully taken into account. We
analytically determine the maximum possible power that can be harvested for a specific
geometry of the wave capture structure. We further show that these geometric dimensions
and the rest of the system can be optimized within a unified framework to maximize the
output power under given ocean wave characteristics. The upper bound on power is ex-
pressed as a function of an effective figure of merit for the power take-off of the wave energy
converter, which combines electromagnetic transducer coupling and parasitic losses. We
also find that for complex systems with multiple energy conversion stages, such as wave
energy converters, the gradient descent method is more appropriate for optimizing the ob-
jective variables compared to the impedance matching principle. In these cases, the latter
approach, although widely employed in the literature, does not yield the global maximum
power delivered to the load. We derive analytical solutions to system parameters, includ-
ing the complex load, mechanical transmission, and generator moment of inertia. These
findings provide a general framework for optimizing the performance of an oscillating surge
wave energy converter and similar architectures.

Keywords: ocean wave energy converter, power optimization, gradient descent method,
impedance matching technique

3.1 Introduction

The vast availability of wave energy, approximately 2.11 TW of average power in the entire globe
(Gunn and Stock-Williams, 2012; Reguero et al., 2015), or an estimated theoretical wave energy
potential of nearly 29,500 TWh/year (Khojasteh et al., 2023), demonstrates its potential as a clean
and abundant resource that could provide 60% to 100% of global electricity demand. Various wave
energy converter architectures have been developed to capture the kinetic and potential energy of
ocean waves and convert them into useful electrical energy (López et al., 2013; Guo and Ringwood,
2021; Zhang et al., 2021; Gallutia et al., 2022). Among these architectures, oscillating surge wave
energy converters have gained attention for their ability to efficiently harness wave energy from
the surge motion of ocean waves in nearshore regions (Sell et al., 2018; Ghasemipour et al., 2022;
Ahmed et al., 2024b; Mi et al., 2024). Differing from point absorbers, whose dimensions and
efficiency are fundamentally constrained by the incident wave wavelengths, oscillating surge wave
energy converters utilize a hinged flap mechanism that pivots about a base anchored to the seabed

29



On the Optimal Performance of Oscillating Surge Wave Energy Converters

or a floating platform, enabling greater scalability and improved adaptability to a range of wave
conditions.

In general, the design of a wave energy converter involves complex procedures (Barbarelli et al.,
2021; Harms et al., 2022; Paduano et al., 2024). It includes computing the fluid–structure inter-
actions based on hydrodynamic principles, optimizing the geometry of the wave energy capture
device, maximizing the efficiency of the power take–off system, and identifying optimal control
strategies. These processes have been iterative and sequential, focusing separately on individual
objectives (Ruellan et al., 2010; Trueworthy and DuPont, 2020; Giorcelli et al., 2022). However,
this approach often leads to suboptimal solutions because it neglects the coupling effects and in-
terdependencies among subsystems. In contrast, a co–design method simultaneously considers the
dynamics of the entire system to maximize overall energy conversion (Coe et al., 2020; Giannini
et al., 2022; Peña-Sanchez et al., 2022; Ströfer et al., 2023; Grasberger et al., 2024; Yang et al., 2024,
2025). It ensures that design rules for one subsystem align with the objectives of others, thereby
enhancing system performance. While several studies have explored various aspects of co–design in
wave energy converters, comprehensive methodologies and generalized principles remain limited in
the literature. This limitation arises from the fact that these studies were concerned with specific
numerical examples of wave converters, which could have been chosen differently and potentially
led to different conclusions.

Sea floor

Mechanical 

transmission 

system

Generator

Flap motion

If

bf Kf

T(t)

Kd

N

bd

Id

Electromagnetic transducer

L

R

ZL

Flap

Mechanical transmission system Electrical load

Figure 3.1: Concept of an oscillating surge energy converter using a flap as the wave capture structure.

In the context of wave energy harvesting, ocean waves are usually categorized into two types,
regular and irregular (Li and Lin, 2012; Stansby et al., 2015; Young, 2017). Regular waves are ide-
alized representations often used in controlled environments, characterized by harmonic patterns
with defined wave height and period. On the contrary, irregular waves more accurately represent
ocean conditions, which exhibit randomness and variability in height, period, and direction due
to the complex interactions of multiple waves and other environmental factors. Despite the pre-
dominance of irregular waves in the ocean, exploring regular waves remains highly valuable in the
design and optimization of wave energy converters (Peng et al., 2020; Hollm et al., 2022; Liu et al.,
2023; Barua and Salauddin Rasel, 2024). These investigations provide a simplified framework that
enables engineers to understand fundamental interactions between ocean waves and wave energy
harvesters, optimize system parameters, and establish standard metrics for performance evaluation.
The results obtained from considering power harnessed under regular waves are insightful for both
refining mathematical models and experimental setups for the entire system. This approach thus
facilitates the development of robust and efficient wave energy converters that can operate reliably
in the complex conditions encountered in real–world applications.
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The primary objective of this paper is to determine the maximum possible power that can be
harvested by an oscillating surge wave energy converter under a given torque strength induced by
regular ocean waves. This optimal power, here referred to as the physical power bound, can be
utilized as a theoretical benchmark to evaluate the effectiveness of an energy converter, offering
insight into the system performance in comparison with an ideal. In the following sections, different
power optimization techniques are explored, aiming to (i) identify the most suitable method for a
complex architecture such as a wave energy converter, (ii) provide a comprehensive understanding
of the conditions under which system parameters need to be satisfied to achieve the output power
bound, and (iii) determine whether reaching this bound is practically feasible. Generalized princi-
ples on design rules for each subsystem of a wave energy converter are also discussed, with a focus
on optimizing the extracted power.

3.2 Modeling of oscillating surge wave energy converters

Structure and principle of operations

T(ω)

1/Kf

bf (ω) If (ω)

N:1 

1/Kd

bd Id

Γ:1 

L

R

ZL

Figure 3.2: Equivalent circuit model for an oscillating surge energy converter.
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Figure 3.3: Alternative equivalent circuit model based on reflected impedance theory.

A typical configuration of an oscillating surge wave energy converter is shown in Figure 3.1 (Mi
et al., 2024). It consists of a structure employed to capture energy of the ocean waves, usually
referred to as a flap, a mechanical transmission system for velocity transfer and amplification,
and a linear electromagnetic generator functioning as a power take–off device. The generated
electrical energy is eventually delivered to the utility grid or loads. A simple and widely used
geometry of the flap is rectangular, which oscillates about the bottom edge anchored to the sea
floor during operation. For the wave energy converter under consideration, its dynamics can be
described using one mechanical coordinate (single degree of freedom). The flap is characterized by
an effective moment of inertia If(ω), an overall damping bf(ω), and a linear hydrostatic stiffness
Kf , where ω is the angular frequency of the wave. If(ω) is the sum of the physical moment of
inertia I and the added moment of inertia Ia(ω), i.e., If(ω) = I + Ia(ω). bf(ω) may include both
linear viscous damping and radiation damping terms (Ahmed et al., 2024b). In general, the added
moment of inertia Ia(ω) and the radiation damping coefficient bf(ω) are frequency–dependent.
These parameters can be numerically obtained through boundary element method (BEM) solvers
such as NEMOH (Kurnia and Ducrozet, 2023), an open–source tool, Capytaine (Ancellin and
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Dias, 2019), a Python–based package, or WAMIT, a commercial software. The modeling of fluid–
structure interaction between the flap and ocean waves is complex, requiring solving the coupled
equations governing fluid flow and structural dynamics. This objective is beyond the scope of the
paper but can be found in other works, such as (Ahmed et al., 2024b; Penalba et al., 2017; Winter
and Motley, 2020; Ahmed et al., 2024a).

The flap is coupled to the electric generator by a mechanical transmission system composed of a
belt mechanism with a linear transduction factor (also known as the gear ratio) of N , assuming no
slippage occurs. The mechanical part of the drivetrain and generator is equivalently represented by
a moment of inertia Id, a damping coefficient bd, and a mechanical stiffness Kd that is included for
a general theoretical investigation. In the electrical port, a pickup coil with an inductance of L is
placed in proximity to permanent magnets to form an electromagnetic transducer. The inevitable
conductive losses of the coil are accounted for by a resistance R in series with the coil inductance.
The coupling between the mechanical and electrical domains is modeled as a linear transducer, with
an electromagnetic (electrodynamic) transduction factor of Γ. Under the excitation of the waves,
the flap oscillates in a rotational trajectory. Its kinetic energy is mechanically transferred to the
generator shaft and subsequently converted to electricity through Faraday’s law of induction.

In the final stage of the energy conversion process, the power produced by the wave energy
converter is directed to a storage element or the alternating current (AC) grid through electronic
interfaces or a power management and control unit. In order to simplify the analysis without loss
of generality, a general complex load of the form ZL = jXL +RL is considered, where {XL,RL}
are real quantities and RL > 0. While ZL does not exactly represent a realistic interface circuit,
it can be considered as the equivalent input impedance of the circuit to be supplied, which is
useful for identifying the upper limit on the performance of the ocean wave energy converter. The
analysis in this paper applies to a linear wave energy converter modeled by deterministic equations
and driven by regular (monochromatic) waves with a precisely known angular frequency. As a
consequence, the moment of inertia If and mechanical damping coefficient bf are assumed to be
constant at the given operating frequency, and the external torque takes the form of T = T0 cos(ωt).
The performance evaluation of a wave energy conversion system with non–linear properties and a
wave converter driven by irregular waves is left open for future study. In the latter scenario, the
waves can be approximated by non–white or colored noise, characterized by a frequency–dependent
power spectral density. This case may require a hybrid modeling approach where the drive torque
and relevant parameters such as If(ω) and bf(ω) are described by stochastic processes.

Equivalent circuit models

An equivalent circuit model is formulated based on impedance analogies, also known as Maxwell’s
analogy. The mechanical domain is represented in the e−V convention where the torque is an across
variable and the velocity is a through variable. The mechanical transmission system (often referred
to as drivetrain) and the electromagnetic generator are modeled as a linear two–port transformer
and gyrator, respectively. This circuit model is depicted in Figure 3.2. Given the well–established
theories, mathematical models, and analytical techniques in electrical systems compared to other
energy domains, unifying the entire energy conversion system into a single electrical domain can
simplify the analysis procedure. This approach also provides a common framework for efficiently
analyzing different components and subsystems. An alternative circuit model is further developed
utilizing the reflected impedance theory, in which the transducer constitutive relationships are em-
bedded in the effective circuit components. For instance, as shown in Figure 3.3, the generator
inductance L is transformed into a capacitance with a value of L/(N2Γ2). As a representative
example, assuming that the load encompasses a capacitance C connected in series with the resis-
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tance RL, their reflected impedances are an inductance of CN2Γ2 and a resistance of N2Γ2/RL,
respectively, which are now in parallel with each other and with the capacitance L/(N2Γ2). This
purely electrical circuit constituted solely of passive elements is convenient for the analysis in the
subsequent sections.

In the mechanical transmission model, the transduction factor N can be chosen as either neg-
ative or positive to establish consistency between the torque and angular velocity sign conventions
and the assumption that power flow is defined as positive into the transformer at both ports
(Tilmans, 1996). However, the circuit model in Figure 3.3 shows that the effective impedance pa-
rameters are always quadratic functions of N . Therefore, the sign of N does not affect the dynamics
of the entire system or the output power, and from now on, we assume that N > 0. For the lin-
earized electromagnetic transducer, two sign conventions are commonly adopted (Kuo, 1967; Rowell
and Wormley, 1997). With the definition that power is positive into each port of the transducer,
the motor torque constant and the motor back electromotive force (back EMF) voltage constant
are equal in absolute value but opposite in sign, i.e., ±|Γ|. Alternatively, a sign convention where
electrical power into the transducer is positive and mechanical power out is positive can be used,
making these two constants identical. Similar to the drivetrain modeling, the electrical elements
in Figure 3.3 are quadratic functions of Γ, which eliminates the difference between the two sign
conventions and the significance of the sign of Γ. This allows a single mathematical structure of the
system dynamics to cover both, and the same form of output power can be obtained regardless of
the sign convention in use. In the models formulated in this paper, the electrodynamic transduction
factor Γ is treated as a positive parameter.

3.3 Theoretical power bound

In this section, we seek to find the maximum possible power that can be delivered to an electrical
load using the Thévenin equivalent circuit and network theory. Here, we adopt the perspective
of the power available from the source to assess a strict upper bound on the system performance.
Practical limitations and the feasibility of the outcomes are not considered at this stage. For
instance, resonance conditions may not be achievable due to various physical and implementation
constraints. However, the theoretical limit derived can serve as a reference for evaluating the
effectiveness of a given wave energy converter.

In Appendix 3.7, we have shown that the maximum power transmitted through a lossless
network is equal to the power available from the source that supplies it. Without loss of generality,
the internal inductance L of the generator is a lossless element and can be incorporated in an
effective load, Z ′

L = jωL+ZL. Thus, the Thévenin equivalent circuit corresponding to the model in
Figure 3.3 is developed in Figure 3.4. The Thévenin equivalent torque and impedance are defined
as follows,

Tth = T0
N2Γ2

R

/(
bf +N2bd + N2Γ2

R
+ jωIf + jωN2Id + Kf

jω
+ N2Kd

jω

)
, (3.1)

Zth = N2Γ2

R

(
bf +N2bd + jωIf + jωN2Id + Kf

jω
+ N2Kd

jω

)/
(
bf +N2bd + N2Γ2

R
+ jωIf + jωN2Id + Kf

jω
+ N2Kd

jω

)
.

(3.2)

Based on the network theory, the maximum possible power that can be delivered to an electrical
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load, which is referred to as the physical power bound, can be determined by

PB = max
{
Pavs = |Tth|2

8ℜ{Zth}

}
. (3.3)

Substituting (3.1) and (3.2) into the expression of Pavs in (3.3), we arrive at

Pavs = T 2
0N

2Γ2
/{

(bf +N2bd)(N2Γ2 +RN2bd+Rbf)+ R

[
Kf +N2Kd

ω
−ω(If +N2Id)

]2
}
. (3.4)

Neglecting practical considerations, we assume that multiple system parameters can be adapted,
including inertia, stiffness, and transduction factor. The second term in the denominator of Pavs is
always non–negative, and must be equal to zero to maximize Pavs, yielding

Kf +N2Kd = ω2(If +N2Id), (3.5)

which implies that the wave energy converter operates under an effective resonance condition. The
optimal mechanical transmission factor N is determined by the equation ∂Pavs/∂N = 0, which
results in

N4 = Rb2
f

Γ2bd +Rb2
d

=
(
M1
M2

)2 1
M1 +1 (3.6)

where the non–dimensional parameters are defined as

M1 = Γ2

Rbd
,M2 = Γ2

Rbf
.

The upper bound of the output power is then given by

PB = P0

√
M1 +1−1√
M1 +1+1

(3.7)

where we define the critical power

P0 = T 2
0

8bf
. (3.8)

As shown in Figure 3.5, the power PB is always less than P0 for all positiveM1, and PB is a strictly
monotonic increasing function of M1. P0 can be regarded as the power limit of a theoretically
ideal system, attained when one or more of the following conditions are met, resulting in a very
large value of M1: The mechanical and electrical loss factors bd and R are negligibly small, and
the electromagnetic transduction factor Γ is high. M1 can be interpreted as a figure of merit for
the power take-off of a wave energy converter, which should be as large as possible to maximize the
output power. At the limit, PB→ P0 when M1→∞, and approximately PB ≈ P0 if M1≫ 1. M2
is an intermediate parameter that, along with M1, identifies the optimal value of the mechanical
transmission factor N . Once the wave energy converter is fabricated and its intrinsic parameters
are identified, no electronic circuit interface or control unit can extract more power than PB.

It is essential to emphasize that, given the characteristics of the waves such as wave height and
frequency, the maximum scavenge power is defined by the input excitation torque T0, the overall
damping coefficient of the flap configuration bf , and the effective figure of merit M1. Specifically,
the power output P0 is proportional to T 2

0 and inversely proportional to bf . Since T0 and bf are
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Figure 3.4: Thévenin equivalent circuit.

Figure 3.5: Normalized upper bound on power PB/P0 as a function of the effective figure of merit M1 for power
take-off of a wave energy converter, as determined by equation (3.7). Given P0, PB always increases with increasing
M1.

both dependent on geometry and frequency, the ultimate goal in designing a flap structure is to
optimize its shape and dimensions to achieve the highest P0 for a given wave frequency, rather than
simply minimizing bf or maximizing T0 alone. There are several methods to enhance the effective
figure of merit M1 for power take-off, such as decreasing the electrically parasitic loss R, lowering
the mechanical loss bd, and increasing the electrodynamic transduction factor Γ. Minimizing the
power loss in a belt transmission system, characterized by the lumped mechanical damping constant
bd, has been extensively studied for decades (Shim and Kim, 2009; Silva et al., 2018; Zhu et al.,
2021). Strategies to reduce bd include proper tensioning and alignment as well as employing high–
quality materials and low–friction coatings. For an electromagnetic generator, in the absence of size
constraints, the number of turns of the pickup coil is proportional to both the resistance R and the
electrodynamic transduction factor Γ (Wheeler, 1928; Cheng et al., 2007). However, M1 ∝ Γ2 and
inversely proportional to R. Therefore, increasing the number of turns could significantly increase
M1. Since the ratio M1/M2 = bf/bd is independent of Γ and R, a larger M1 achieved through
this approach can also be beneficial for reducing the optimum N when necessary. Under space
constraints, increasing the number of turns while keeping the same wire diameter is not feasible.
Alternative methods to increase Γ include using stronger permanent magnets or incorporating
magnetic flux concentrators.

While primarily focusing on the power available from the source, the Thévenin–equivalence
technique can also provide insights into the properties of the load. The optimal complex load can
be obtained by satisfying the conjugate impedance matching condition, where the load impedance
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equals the complex conjugate of the Thévenin source impedance, Z ′
L = Z∗

th. This is motivated by
the fact that the optimum complex load impedance can be implemented either through an active
pulse width modulation (PWM) rectifier or a passive rectifier coupled with a buck–boost converter
(Bowden et al., 2015; Badel and Lefeuvre, 2016; Tse and Chung, 2020; Costanzo et al., 2021). As
a consequence of Equation (3.5), the imaginary parts of Thévenin equivalent impedance Zth are
canceled out, therefore, ℑ{Z ′

L}= 0. In order to eliminate the imaginary impedance introduced by
the inductance in the effective load Z ′

L, a capacitance can be connected at the output port, with
XL = 1/(−ωC) =−ωL, leading to

C = 1/(ω2L). (3.9)

The load resistance is then adjusted to match the real part of Zth, which is now identical to Zth.
This matching results in

RL =R
√
M1 +1. (3.10)

Once (3.5), (3.6), (3.9), and (3.10) are satisfied, the power induced in the load RL reaches its
physical bound PB. This section focuses on the specific aim of finding the global optimum of a
wave energy converter operating in regular waves of a single frequency. However, the conditions
required for this optimal performance may not be achievable in practice due to operational or
engineering constraints. How system performance behaves away from the optimum under various
scenarios remains an open question, which is to be explored in subsequent sections.

3.4 Power optimization for resonant wave energy converter
We investigate various techniques for optimizing the power delivered to a load, aiming to com-
prehensively understand the optimal conditions of the system parameters required to achieve the
maximum possible output power. Our focus in this section shifts to the load side, with the complex
load impedance ZL considered as the primary variable in the optimization scheme. However, the
potential contributions of other parameters, such as the mechanical transduction factor N , to the
maximization of harvested power are also examined. We concentrate on the special case of reso-
nance, as it has been shown that the maximum output power of an energy harvester is attained
when the resonance frequency of the system closely matches or is identical to the frequency of
the driving excitation (Mitcheson et al., 2008; Truong, 2022). The performance of a more general
system, whose resonance frequency may be far from the frequency of the waves, is evaluated in
section 3.5.

A general framework
Our first aim is to provide a framework to analyze the performance of an ocean wave energy
converter in a general scenario. The lumped element circuit model depicted in Figure 3.2 is utilized
for a clearer physical interpretation of the actual dynamic quantities, such as velocities of the
mechanical parts and voltage across the load, and how they are derived from the model. The
complex velocity amplitudes of the flap and the generator shaft are given by

Θ = T0
bf +Zin

,Ψ =NΘ (3.11)

where the input impedance is

Zin = jωIf + Kf
jω

+N2
(
bd + jωId + Kd

jω
+ Γ2

R+ jωL+ jXL +RL

)
. (3.12)
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In this formulation, the excitation torque T and the damping coefficient bf can be considered to
mathematically constitute an effective source of power, in which the largest possible power it can
provide the rest of the system is P0. Zin then represents the impedance seen from this power source.
The voltage across the load resistance RL and the corresponding output power are

VL = ΨΓ
R+ jωL+ jXL +RL

RL, (3.13)

PL = 1
2
|VL|2

RL
. (3.14)

The set of equations [(3.11)–(3.14)] offers a general procedure applicable to any set of physical
parameters for studying the system performance under various conditions. In the next two sub–
sections, we explore simple cases operating at resonance, where resonators are formed in both the
mechanical and electrical domains to suppress the imaginary parts of impedance.

Optimal load and mechanical transmission ratio at resonance using gradient descent
method
In theory, a resonance structure can be achieved by designing the moment of inertia and mechanical
spring stiffness in the mechanical domain and connecting an external capacitance in the electrical
output port of the electromagnetic generator such that the following conditions are satisfied,

Kf = ω2If , Kd = ω2Id, XL +ωL= 0. (3.15)

At resonance, the output power in (3.14) is simplified to

PL = 1
2

RL
(R+RL)2

(T0NΓ)2[
(bf +N2bd)+ N2Γ2

R+RL

]2 . (3.16)

The stationary points of the power with respect to RL and N are determined by ∂PL/∂RL = 0 and
∂PL/∂N = 0, which are equivalent to(

Γ2 +(R−RL)bd
)
N2 + bf(R−RL) = 0, (3.17)(

Γ2 +(R+RL)bd
)
N2− bf(R+RL) = 0. (3.18)

In analogy to M1 and M2, we define the following dimensionless parameters

M3 = Γ2

R(N2bf + bd) = M2
N2 +M2/M1

,

M4 = Γ2

R(bf +N2bd) = M1
N2 +M1/M2

.

Equation (3.17) results in the optimal load as a function of the mechanical transmission factor

RL =R+ N2Γ2

bf +N2bd
=R(1+N2M4), (3.19)

and the output power becomes

PL = P0
N2M4

1+N2M2(1+1/M1) . (3.20)
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Simultaneously solving equations (3.17) and (3.18) yields identical solutions for the optimal me-
chanical transmission factor and load resistance as in (3.6) and (3.10), respectively. Substituting
the optimal solutions back into (3.16) leads to an output power equal to the physical bound PB in
(3.7).

This analysis shows that, regardless of the initial pathway chosen, whether starting with the
power available from the Thévenin equivalent source in (3.3) or the output power expression in
(3.16), the global optimal solutions for the load and mechanical transduction factor at resonance,
as well as the upper bound on generated power, remain the same. In addition, it seems to indicate
the effectiveness of the impedance matching method in finding the optimal load compared to the
gradient descent technique. The former, as presented at the end of section 3.3, may be more
straightforward in some circumstances, especially for complex architectures with multiple stages
of energy conversion and numerous system parameters. However, it is less clear whether these
arguments always hold. Therefore, both approaches are employed as tools for further studies in
this paper, and the results are evaluated in detail.

An important observation here is that the first two equalities in (3.15) form a special case of
the condition (3.5). It can be seen as one specific solution to (3.5) that is independent of the
mechanical transmission factor N . Any physical set of parameters {Kf , If ,Kd, Id} that does not
satisfy (3.15), but fulfills (3.5) when combined with N , will also suppress the imaginary parts of
the input impedance Zin, and all the results in this section are recovered. Therefore, the local
resonance frequencies of the flap and drivetrain are not necessarily equal to the wave frequency to
maximize the harvested power. For example, in an extreme scenario when the mechanical stiffness
of the drivetrain Kd is set equal to zero, the moment of inertia Id can be designed such that
Id = (Kf/ω

2− If)/N2, thereby (3.5) is achieved. In this case, the local resonance frequency of the
flap should not match the wave frequency as it leads to Id = 0, an unphysical value.

It should be noted that conditions (3.5) and (3.15) are associated with (3.6), where the optimum
of N is expressed as a function of dimensionless quantitiesM1 andM2. An independent optimiza-
tion procedure utilizing the bi–conjugate impedance matching method leads to a scenario where
the equality PL = PB is achieved at N = 1, but it requires that M1 = (bf/bd)2− 1. The detailed
analysis is presented in Appendix 3.7. Applying the same logic to equation (3.6), if N is chosen
beforehand, the effective figure of merit for power take-off must beM1 =

(
bf/(N2bd)

)2
−1, so that

PL is equal to PB. However, this expression is valid if and only if bf > N2bd, which is not always
guaranteed. Tuning the mechanical damping coefficients to make M1 physical and to maximize
this figure of merit is challenging. Therefore, choosing to optimize the mechanical transmission
factor N seems to be the more common approach.

Since the impedance matching method is widely used in the literature, one might question
the possible outcomes if the optimal load resistance RL is determined by this theorem, while the
influence of the mechanical transmission factor N on the harvested power is explored over the entire
physical range of N ∈ (0,+∞) through the gradient descent technique. Additionally, it is unclear
whether N must be strictly computed by (3.6) or if other possibilities exist that could yield an
output power identical to or close to the power limit PB. These concerns are addressed in the
following investigations.

38



On the Optimal Performance of Oscillating Surge Wave Energy Converters

Impedance matching to the load and optimal mechanical transmission ratio at reso-
nance
Our starting point is the conjugate impedance matching of a load for maximizing the power delivered
to it from a generator. The condition of this classical circuit theory concept is

RL = ℜ{Zout},
XL =−ℑ{Zout}

(3.21)

where the general form of the output impedance seen from the load is given by

Zout =R+ jωL+ Γ2

bd + jωId + Kd
jω

+N2
(
bf + jωIf + Kf

jω

) .

These analyses are performed under the assumption that conditions (3.5) and (3.9) are satisfied.
The imaginary part of the fractional term in the output impedance is suppressed. jXL becomes
the impedance of a capacitance in series with RL to cancel out with the impedance of the coil
inductance. The optimal load resistance and the corresponding power are thus derived as

RL =R(1+M3), (3.22)

PL = P0
4(M3 +1)

M2
[
(M3 +2)/(NM4)+N

]2 . (3.23)

We note that, the load resistance in (3.22) is a function of the mechanical transmission factor N .
The optimal solutions to N , if they exists, is obtained by differentiating PL in (3.23) with

respect to variable N and setting equal to zero, resulting in

X4 +C3X
3 +C2X

2 +C1X+C0 = 0 (3.24)

where X =N2 > 0, and the polynomial coefficients are

C3 = 2
[(M2
M1
−M1
M2

) 1
M1 +2 +M2

( 1
M1

+1
)]
,

C2 = 3
[
(M2/M1)2 +M2

2/M1−1
]
,

C1 = 2M2
M1

{[(M2
M1

)2
−1
](M1 +1)2

M1 +2 −1
}
,

C0 =−
(
M2/M1

)2
(1+M1).

Although the quartic equation (3.24) can be solved analytically, these explicit closed–form solutions
are generally cumbersome and difficult to interpret. Therefore, a numerical method, such as the
vpasolve function in MATLAB, is more appropriate in this case.

Figure 3.6 shows the maximum output power under the resonance conditions (either (3.5) or
(3.15)), computed utilizing the gradient descent approach and impedance matching theorem, and
expressed as a function of the mechanical transmission factor. The example set of system parameters
in use {bf , bd,Γ,R} is listed in Table 3.1. It can be seen that the former method results in an output
power that is always equal to or higher than that of the latter for any value of N . Equality occurs
only at N = 1, as discussed further in section 3.6. Hence, the impedance matching technique can
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Figure 3.6: Normalized maximum output power PL/P0 at resonance as a function of normalized mechanical trans-
mission factor N/N0, obtained from equations (3.20) and (3.23) using gradient descent and impedance matching
methods. The optimal load resistance is determined by (3.19) and (3.22), and the optimal mechanical transmission
factor N0 is the solution to (3.6). Blue solid circle and square represent the power maxima corresponding to the
optimal values of N given by (3.6) and (3.24), respectively.

be considered suboptimal compared to the gradient descent method. In theory, the number of
positive solutions of equation (3.24), a polynomial equation of the fourth degree, depends on the
relationship between M1 and M2. This indicates that there may exist other or multiple solutions
for N and RL(N) such that the output power can closely approach the physical power bound PB.
However, in the specific example presented, a unique solution is observed.

The results derived in this section offer solutions for designing an optimal wave energy converter
without considering practical constraints. However, solving equation (3.5) for Id and Kd may yield
physically unrealistic values, depending on the mechanical properties of the flap and the frequency
of the regular waves. Thus, some authors may be more interested in the performance of a system
whose characteristics do not fulfill this condition, and how it compares to the global optimum. This
aspect is addressed in the next section.

3.5 General power optimization and system effectiveness

Wave energy converter effectiveness
We now consider more general scenarios in which resonators in the mechanical domain may or may
not be formed, and only the load can be arbitrarily adjusted by power electronic interface circuits.
To assess the performance of a wave energy converter, we introduce the system effectiveness, which
can be defined as the ratio between the harvester output power and the largest achievable power
of the optimal system,

EH = PL
PB

. (3.25)

This metric indicates how well a wave energy converter performs compared to an ideal configura-
tion.The output power PL is computed by the process [(3.11)–(3.14)], while PB is given by (3.7).
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In this section, we further evaluate the gradient descent and impedance matching methods to de-
termine which is preferable for optimizing the performance of the general complex system under
consideration.

Gradient descent approach

In order to reduce the complexity of derivation, we introduce the notations

be = bf +N2bd,

Xe =Xf +N2Xd = (ωIf −Kf/ω)+N2(ωId−Kd/ω),
Γe =NΓ.

The stationary points of the output power are obtained by by setting its derivatives in relation to
the real and imaginary parts of the load equal to zero, ∂PL/∂XL = 0 and ∂PL/∂RL = 0, leading to
the equations

(X+XL)(X2
e + b2

e)−Γ2
eXe = 0,

(R2−R2
L)(X2

e + b2
e)+

[
(X+XL)be

]2
+ 2RbeΓ2

e +
[
Γ2

e− (X+XL)Xe
]2

= 0,

respectively. Hence the optimal solution for the load is

XL =−X+ Γ2
eXe

X2
e + b2

e
,

RL =R+ Γ2
ebe

X2
e + b2

e
.

(3.26)

Substituting these expressions back into (3.14), we arrive at

PL = Γ2
eT

2
0

8
[
Γ2

ebe +R(X2
e + b2

e)
] . (3.27)

Considering Xe a variable, the derivative of the output power in (3.27) in terms of Xe is

∂PL
∂Xe

=− Γ2
eT

2
0RXe

4
[
Γ2

ebe +R(X2
e + b2

e)
]2 .

We have that ∂PL/∂Xe = 0 if and only if Xe = 0, ∂PL/∂Xe > 0 for Xe < 0, and ∂PL/∂Xe < 0 for
Xe > 0. In the limits, PL→ 0 when Xe→±∞. The output power PL monotonically increases and
decreases with negative and positive Xe, respectively, and attains a unique maximum when Xe is
zero. Therefore, if it is not feasible to optimize the wave energy converter such that Xe is canceled
out, minimizing the quantity |Xe|2 is always desirable to maximize the output power.

We note that the parameters be,Xe, and Γe are dependent on the mechanical transmission factor
N . The optimal value of N can be found by setting ∂PL/∂N = 0, where the power PL is given by
(3.27), resulting in

N4 = R(X2
f + b2

f )
Γ2bd +R(X2

d + b2
d) = (Xf/bd)2 +(M2/M1)2

(Xd/bd)2 +M1 +1 . (3.28)
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Inserting the mechanical transmission factor from (3.28) into (3.27), we obtain the maximum output
power with the simultaneous optimization of the variables XL,RL, and N

PL = P0

{
M1−2

[√((
Xd
bd

)2
+1
)((

Xf
bf

)2
+M1+1

)
−Xd
bd

Xf
bf
−1
]}

/[
M1 +4Xd

bd

Xf
bf
−4
(
Xf
bf

)2
− 4
M1

(
Xd
bd
−Xf
bf

)2
]
.

(3.29)

Direct consequences of these investigations are the findings presented in section 3.4, which focus
on resonance when Xd = Xf = 0. In a more general case, if Xe = 0, following the same gradient
descent optimization procedure yields identical results for the optimal N,XL,RL, and output power
as shown in (3.6), (3.9), (3.10), and (3.7), respectively.

Assuming that in a realistic system, the condition Xe = 0 may not be achievable. The mini-
mization problem of |Xe|2 with the optimal N in (3.28) can be formulated as follows,

min

|Xe|2 =

Xf +Xd

√
(Xf/bd)2 +(M2/M1)2

(Xd/bd)2 +M1 +1

2.
Since Xf results from optimizing the flap geometry such that the power P0 is maximized, and
mechanical loss factors such as bd and bf are always desired to be as minimal as possible, the
common choice of variable to minimize |Xe|2 is Xd. Without any constraints, Xd can be determined
by the equation d|Xe|2 /dXd = 0, leading to the solution

Xd =−Xf
M2
M1

√
M1 +1. (3.30)

Denoting the right–hand side of (3.30) as X∗
d, we also find that d|Xe|2 /dXd > 0 for all Xd > X∗

d
and d|Xe|2 /dXd < 0 for all Xd <X∗

d. In other words, |Xe|2 monotonically decreases for Xd on the
left side of the minimum point X∗

d and monotonically increases for Xd on the right side. Therefore,
if Xd is subject to a constraint of Xd ∈ [Xd,ℓ,Xd,u], where Xd,ℓ and Xd,u are the lower and upper
bounds to Xd (Xd,ℓ <Xd,u), then the optimal Xd is chosen depending on the relationships among
these bounds and X∗

d. In particular, Xd = Xd,u if Xd,u < X∗
d, Xd = X∗

d if X∗
d ∈ [Xd,ℓ,Xd,u], and

Xd =Xd,ℓ if X∗
d <Xd,ℓ. Note that the practical bounds on Xd depend on the wave frequency ω and

constraints on the moment of inertia and spring constant of the drivetrain, Id and Kd. This also
underscores an important role of Kd in maximizing the system performance, and that assuming or
setting Kd = 0 in a numerical optimization scheme is not justified.

Impedance matching method
Applying the condition of impedance matching to the load in (3.21), its real and imaginary parts
are derived as

RL =R

(
1+ M3M2

f
M2

3 +M2
f

)
, (3.31)

XL =−X+ Γ2(N2Xf +Xd)
(N2Xf +Xd)2 +(N2bf + bd)2 (3.32)

where X = ωL,Xf = ωIf −Kf/ω,Xd = ωId−Kd/ω, and the dimensionless parameters are defined
as

Mf = Γ2

R(N2Xf +Xd) ,Md = Γ2

R(Xf +N2Xd) .
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Figure 3.7: Maximum effectiveness of the wave energy converter as a function of the normalized mechanical trans-
mission factor N/N0, computed from equations (3.27) and (3.33) utilizing gradient descent and impedance matching
principles. The optimal complex loads are expressed by (3.26) and (3.31), and the optimal mechanical transmission
factor at resonance N0 is specified by (3.6). The blue solid circle and square represent the highest effectiveness at the
optimal values of N , determined analytically by Equation (3.28) and numerically by the Genetic Algorithm based on
the power expression (3.33), respectively.

The output power can then be written as

PL = P0
4N2(λ−1)(λ2 +γ2)/M2[

(λ2 +γ2)/M4 +λN2
]2

+
[
(λ2 +γ2)/Md−γN2

]2 (3.33)

where

λ= 2+ M3M2
f

M2
3 +M2

f
, γ = M2

3Mf

M2
3 +M2

f
.

Taking the derivative of the power in (3.33) with respect to N leads to a highly complex equation
that is very difficult to solve exactly. However, the optimal mechanical transmission factor N can be
determined numerically using the Genetic Algorithm, a global optimization toolbox in MATLAB,
under the inequality constraint N ∈ (0,+∞).

Figure 3.7 illustrates an example of the maximum effectiveness of an oscillating surge wave
energy converter, based on the complete set of system parameters detailed in Table 3.1. The optimal
mechanical transmission factor at off-resonance is considerably higher than at resonance. Since
neither condition (3.5) nor (3.15) is satisfied, the system effectiveness is well below the theoretical
optimum (represented by the dashed line in the Figure). In this case, the difference between the
results derived from the gradient descent and impedance matching approaches becomes even more
pronounced compared to the discrepancy shown in Figure 3.6. Furthermore, it is essential to
emphasize that as the mechanical transmission factor increases, the effectiveness of the considered
system gradually converges with that of the optimal case. This property explains why the numerical
optimization presented in (Grasberger et al., 2024) tends to yield a high value of N as the variation
in output power between the true–optimal design and a non–optimal solution in this region is nearly
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Parameters Value

Flap structure (Ahmed et al., 2024b)

Effective mechanical damping coefficient, bf 10.34, Nms
Overall moment of inertia, If 59.10, kgm2

Mechanical stiffness, Kf 290, Nm/rad

Mechanical transmission system (drivetrain) (Grasberger et al., 2024)

Effective mechanical damping coefficient, bd 2, Nms
Moment of inertia, Id 20, kgm2

Mechanical stiffness, Kd 0, Nm/rad

Electromagnetic generator (Sergiienko et al., 2021; Grasberger et al., 2024)

Coil inductance, L 1.4, mH
Parasitic resistance, R 38, mΩ
Electromagnetic transduction factor, Γ 5.397, Nm/A

Wave frequency, f 0.15, Hz

Table 3.1: Example of system parameters

negligible. This finding underscores the importance of deriving analytical solutions for the optimal
design of an oscillating surge wave energy converter, as they can offer insights that numerical
algorithms typically cannot provide.

Up to this point, questions regarding how to determine the optimal set of system parameters
(such as the mechanical transmission factor, the moment of inertia and spring stiffness of the
drivetrain, and the complex load) and which method is most appropriate have been thoroughly
investigated for both ideal and general cases. The modeling techniques and optimization procedures
presented in this paper can also be generalized and adapted for other similar structures, including
buoy point absorber wave energy converter and ocean current energy harvester.

3.6 Discussions
Although the impedance matching theorem is convenient as it provides direct relationships between
the real and imaginary parts of the optimal load and the output impedance of the system, it does not
always yield the same results as the gradient descent method. Furthermore, two–side impedance
matching is not guaranteed to always have a physical solution. In some particular scenarios,
identical outcomes can be obtained regardless of the approach used (Truong et al., 2019). For
instance, the investigations in sections 3.3, 3.4, and Appendix 3.7 yield the same global maximum
point of the output power. However, while the corresponding optimal conditions are identical for
the first two analyses, the last one is only a specific case of them. In other circumstances, the
impedance matching technique can be considered sub–optimal compared to the gradient descent
approach, such as the results in sections 3.4 and 3.5 relative to those in sections 3.4 and 3.5,
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respectively. We prove that the output power achieved with the optimal load determined by the
impedance matching theorem is always less than or equal to that with the optimal load derived from
the gradient descent method. Therefore, in general, the gradient descent algorithm is preferable to
determine the optimal parameters for the wave energy converter. Detailed proofs are provided in
Appendix 3.7.

Equation (3.5) (or equivalently, Xe = 0) can be solved with at least two independent variables, Id
and Kd. Thus, there are infinite possibilities to optimize the performance of a wave energy converter
such that the output power can achieve its physical bound, from both physics and mathematics
points of view. However, due to potential practical limitations, the final parameter selections are
made based on their specific constraints, which may lead to a maximum output power less than
its upper bound. While the analysis presented in this work has accounted for the dynamics of the
entire system as a unified unit, the analytical findings show that each subsystem can be optimized
separately using its corresponding optimal criteria. This could reduce computational complexity
compared to numerically optimizing the system as a multiple–variable problem. Moreover, achiev-
ing global optimality with numerical solutions in a consistent and reliable manner is challenging.

A general procedure to optimize the wave energy converter can be briefly summarized as follows.
The geometry of the flap plays a vital role in capturing the energy carried by ocean waves. It should
be designed such that the effective damping coefficient bf is minimized and the external torque
amplitude T0 acting on the flap is maximized, thereby increasing the power P0. The parameters
If and Kf are not considered as variables but rather consequences of this optimization scheme.
The electrical components of the electromagnetic transducer are adjusted to achieve a sufficiently
large effective figure of merit M1 so that PB closely approaches P0. The moment of inertia Id and
spring stiffness Kd of the drivetrain are then optimized accordingly to minimize the quantity |Xe|2.
Finally, a power electronic circuit and control unit is employed to synthesize the optimal effective
load impedance to maximize the output power.

In the ideal case where Xe = 0, i.e., the mechanical characteristics of the drivetrain Id and Kd
are configured to satisfy (3.30), the optimal transmission factor N and the imaginary and real parts
of the load ZL are given by (3.6), (3.9), and (3.10), respectively. The output power in this case
reaches its upper limit PB, as defined in (3.7). When subject to practical constraints that cause
Xe to differ from zero, the optimal Xd is at one of its constraints to minimize |Xe|2, and the pair
{Id,Kd} is selected accordingly. The optimum of N is calculated using (3.28), and the optimal
complex load is expressed by (3.26). The maximum achievable power in this scenario is described
by (3.29), which is always lower than PB. The performance of the system can be evaluated by
the effectiveness (3.25). The analytical solutions presented in this paper partially provide general
design rules for an optimal wave energy converter.

3.7 Conclusions

We have investigated the performance of an oscillating surge wave energy converter under resonance
and for a general scenario. We have determined the physical power bound and identified the
sufficient conditions to achieve this maximum power. We have introduced an effective figure of
merit for power take-off of a wave energy converter, a comprehensive metric for evaluating the
overall performance and effectiveness of the system. A rigorous analysis shows that the gradient
descent approach, in comparison with the impedance matching method, is preferable for finding
the global maximum output power and determining the desired real and imaginary characteristics
of the electrical load. This observation could change how results established in the literature
by impedance matching theory are interpreted and provide significant insights into selecting the
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proper procedure to optimize a complex energy harvesting system. Furthermore, optimal values of
other parameters, such as the mechanical transmission factor and generator mechanical properties,
are explored for both unconstrained and constrained regimes, with analytical solutions derived
accordingly. The findings offer valuable principles for designing an efficient linear oscillating surge
wave energy converter under harmonic excitation of regular waves, and the presented framework
can be extended to optimize various structures, including point absorber wave energy converters.

Appendix A: Power transmitted through a lossless network
We consider a harmonic voltage source VS = V0 cos(ωt) with its internal impedance ZS =RS + jXS,
connected with a lossless network represented by an imaginary impedance jY . This configuration
is shown in Figure 3.8. We now prove that the maximum power transmitted through this network
is identical to the power available from the source. The voltage and impedance of the Thévenin
equivalent circuit in the frequency domain are given by

Vth,S = V0
RS + j(XS +Y ) , (3.34)

Zth,S = jY (RS + jXS)
RS + j(XS +Y ) . (3.35)

The maximum power transmitted from port 1 to port 2 is the power available from the Thévenin
source, which is derived as

Pavs,th = 1
8

∣∣∣Vth,S
∣∣∣2

ℜ{Zth,S}
= 1

8
V 2

0
RS

= 1
8
|VS|2

ℜ{ZS}
, (3.36)

which is the power available from the voltage source VS, or the highest power that the source can
deliver to the rest of the circuit.

VS

ZS

Vth,S

Zth,S

jY

1 2

21

2

2

Figure 3.8: Thévenin equivalent circuit representation for the lossless network under consideration.

Appendix B: Bi–conjugate impedance matching at resonance
A classical method to maximize the power delivered to the load of a complex system is the bi–
conjugate matching theorem. In particular, the input impedance is matched with the conjugate
impedance of the effective power source, and the output impedance is equal to the conjugate
impedance of the complex load,

Zin = Z∗
S, (3.37)

Zout = Z∗
L. (3.38)

The effective power source is specified by {T,bf}, where the source impedance is purely real, ZS = bf .
Under resonance, i.e., when the conditions in (3.15) are fulfilled, the required impedance matching
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is simplified as

bf =N2
(
bd + Γ2

R+RL

)
, (3.39)

RL =R+ Γ2

N2bf + bd
. (3.40)

The physical (positive) solution to RL and N are

RL =R

√
M1(M1 +2)M2

2
M2

1 +M2
2

+1, (3.41)

N2 =
√

(α/β)2 +1+α/β (3.42)

where

α=M1/M2−M2/M1−M2, (3.43)
β =M1 +2. (3.44)

Substituting (3.41) and (3.42) into (3.16) yields the output power

PL = P0
M1rL

(rL +1)(M1 + rL +1) (3.45)

where rL denotes the optimal load ratio defined as rL = RL/R from (3.41), which is a function of
both M1 and M2. We now look for the optimal values of M1 and M2 that make the power in
(3.45) stationary. Differentiating and setting equal to zero, we get

M2 =M1/
√
M1 +1, (3.46)

while ∂PL/∂M1 > 0 for all {M1,M2}> 0. Inserting (3.46) back into the expressions of the optimal
load, mechanical transmission factor, and output power, we obtain

RL =R
√
M1 +1, (3.47)

N = 1, (3.48)

PL = P0

(√
M1 +1−1

)2

M1
= PB. (3.49)

Equations (3.46) and (3.48) can be viewed as a special case of a more general optimal condition
expressed in (3.6). It is also shown that maximizing the output power through the process of
bi–conjugate impedance matching leads to identical results in power and optimal load resistance in
(3.7) and (3.10), respectively.

We can write equation (3.46) with M1 as a dependent variable as follows

M1 = (bf/bd)2−1. (3.50)

This solution is only valid for bf > bd, which is not always the case. Assuming that the condition
bf > bd is met andM1 is physical, the desired value ofM1 can be attained in practice by selecting
permanent magnets with appropriate magnetic strength or by deliberately designing magnetic flux
loops such that Γ2/R= (b2

f −b2
d)/bd. However, implementingM1 based on the mechanical damping

coefficients bf and bd is not preferable, as expression (3.50) may not yield a large M1, which in
turn decreases PB.
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Appendix C: Comparison of output power with optimal load from gradi-
ent descent method and impedance matching theorem
We first consider the optimal power derived in section 3.4 for the ideal scenario. We show that
the power expressed in (3.20) is always larger than or equal to that in (3.23). By subtracting the
two equations from both sides correspondingly, the normalized power difference can be written as
∆Pr/P0 =Nr/Dr. All the terms in the denominator Dr are positive, therefore, it is also positive.
The detailed expression is quite complicated and is not shown here. The numerator is given by
Nr =

[
M2

1M2
(
N4−1

)]2
, which is non–negative for all N . As a consequence, ∆Pr is always non–

negative, indicating that the power achieved by the gradient descent method is always larger than
or equal to that by the impedance matching theorem. The two power values are equal only for
N = 1, as can be seen in Figure 3.6.

For the more general case in section 3.5, we examine the power expressions in (3.27) and (3.33),
which result from the gradient descent and impedance matching methods, respectively. Following
the same procedure, we can write the power difference in the form of ∆Pg = Ng/Dg. Similarly,
we find that Dg > 0 and Ng = Γ6N2T 2

0

(
N4− 1

)2
(X2

f + b2
f ) ≥ 0 for all N . Equality occurs only

for N = 1, as demonstrated in the example in Figure 3.7. These findings prove that the gradient
descent approach is preferable for optimizing system parameters to maximize the power delivered
to the load or utility grid.
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6S-Principle Methodology for Constructing a
Grand Panel and Comparison with Generative AI
Tools

Zhigang Wei & Pingsha Dong

US naval shipbuilding faces major challenges in ramping up production to meet unprece-
dented national security demands. One major challenge is the one-of-a-kind structural
design and low volume production, both of which make it difficult to introduce state-
of-the-art automation construction technologies and statistical accuracy control. The 6S
Principles is a method consisting of six fundamental principles distilled from decades of re-
search and teaching experience in the construction of marine structures. Their applications
and implications are far beyond specific domains, as demonstrated previously, and could
be universal and beneficial for broader applications. The aim of this study is to explore
novel AI implementation of the 6S Principles for smart modular design and construction for
enabling shipbuilding automation. To do so, a grand panel as a final level of the modularity
definition is considered here. Advanced generative AI algorithms are then demonstrated
for following the 6S Principle-based reasoning for identifying modularity at each level of
the construction process leading to the final interim product which is the grant panel. The
resulting modularity definitions and construction sequencing inferred from generative AI
tools through initial training sessions are compared with mechanics principle-based solu-
tions. The results are rather promising. It is found that, with some strategically defined
data patterns as input, the 6S Principles and the AI generated modular construction pro-
cedures can converge to very similar results (e.g., 90% correct), indicating the potential for
implementing a 6S Principle-Guided Neural Network (6SPG-NN) for more complex ship
structure components.

Keywords: 6S-Principle methodology, grand panel, welding sequence, AI

4.1 Introduction

US naval shipbuilding faces major challenges in ramping up production to meet unprecedented
national security demands. One of the major challenges is the one-of-a-kind structural design and
low volume production, both of which make it difficult to introduce state-of-the-art automation
construction technologies and statistical accuracy control. Modular ship construction, i.e., a ship is
built in large pre-outfitted modules that are later joined together, and modern modular open sys-
tems architectures (MOSA) offer significant advantages in speed, quality control, cost predictability,
and flexibility. When successfully managed, modular construction can shorten build schedules and
deliver higher overall quality. However, modularity also brings a set of unique challenges through-
out the design, production, and assembly phases. Overcoming these challenges demands careful
upfront planning, mature digital-engineering tools, and a highly coordinated supply chain, which
are often challenging in themselves in practice.
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One potential solution, in view of some of the most recent research findings at the University of
Michigan, is to introduce a smart modularity definition by combining the Group Technology (GT)
approach and mechanics-based principles at interim product levels. First, the goal of introducing
GT-based interim product families is to reduce the number of distinct interim products and maxi-
mize the population within each product family so that mass-production technologies and modern
statistical quality control methods can be implemented to the maximum extent possible. Second, to
meet today’s manufacturing challenges, particularly in dealing with the construction of lightweight
structures, the above conventional interim product definitions must consider important thermome-
chanical interaction effects on dimensional variations, distortion, and manufacturing quality. With
the consideration of GT and the mechanics-based understanding of how thermomechanical inter-
actions among materials, manufacturing processes, and interim product forms, a set of principles
with an axiomatic framework has been firmly established recently and successfully demonstrated
by numerous shop-floor construction examples. These fundamental principles extracted from the
domain knowledge have been dubbed the 6S Principles that can cover the necessary conditions to
minimize unevenly distributed residual stress/strain caused distortion, without relying on detailed
thermomechanical analysis, at least for some typical simplified construction scenarios.

Based on what has already been established for the 6S Principles, the objective of this report is
to demonstrate the 6S Principles and it’s implementation into a simple but important example of a
ship grand panel. The results obtained from the 6S Principles will be compared to the construction
procedures suggested by current generative AI tools, which are operated on Big Data, and the
results generated can be treated as the current best practice if the prompt is relevant and accurate.
If successful, further efforts will be made to develop a rigorous mathematical framework for gen-
eralizing the 6S Principles and AI implementation for demonstrating its effectiveness in achieving
smart modularity. This report is organized as follows: the 6S Principles are briefly described and
discussed in Section 4.2. A grand panel with pre-defined plate patterns is used as an example to
demonstrate the panel construction procedure with the 6S Principles and the solutions are com-
pared with those obtained from the generative AI tools with different levels of prompt in Section
4.3, and the results are discussed in Section 4.4 and future research directions are outlined.

4.2 6S Principles

The major drivers in naval structure construction are cost, quality, and time to completion. As a re-
sult, automation is the key, as shown in Figure 4.1. Automation requires sufficient repetitiveness in
modular forms or at sub-module or component levels, also referred to as interim products. In ship-
building, this is perhaps the most challenging task. With repetitiveness in interim products, some
proven mass-production manufacturing technologies and production processes can be introduced for
achieving modular manufacturing and modular construction, leading to the final structural form.
Otherwise, naval structure construction would remain a labor-intensive industry. As illustrated in
Figure 4.1, smart modular design in the context of Smart Manufacturing, as all industry sectors
strive to achieve under the notion of Industry 4.0 today, becomes critically important to the naval
structure construction for overcoming some of the challenges. The principles of interim product
definitions (“6S”) for achieving “smart modular construction” are Group Technology-based interim
product definitions, seeking repetitiveness based on similarity in forms, shapes, or geometry, and
similarity in processes. Mechanics-based interim product requirements for accuracy control based
on symmetry in forms and processes, stability in geometry, and supportability.

In summary, the smart modularity definitions can be described as the 6S Principles as follows.
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Figure 4.1: Smart modularity definitions for production volume and part standardization.

Principle 1 Similarity in interim product forms

Principle 2 Similarity in processes

Principle 3 Symmetry in interim product forms

Principle 4 Symmetry in processes

Principle 5 Stability in interim product shape during manufacturing and assembly

Principle 6 Supportability in positioning, clamping, locating, etc.

The first two principles are taken from the concept of Group Technology developed in Japan
in the 1980s and transferred to the US shipbuilding industry in the late 1990s. The last four are
mechanics-based principles developed by UM researchers over the last decade or so. If there is any
lack of the above attributes, efforts must be taken on how to introduce them through a “divide” and
“combine” process to either redefine an interim product or through alternative process sequencing
and introducing temporary support and reinforcement for achieving the above criteria. The 6S
Principles seem to be complete based on all the demonstrations conducted so far, and have been
found to be critically important at various stages of the construction of naval structures.

Figure 4.2 shows several examples demonstrating the importance of 6S Principles in structure
construction and why some of the interim product attributes should be considered. One simple
interim product example is a fabricated rectangular box beam component, which can be constructed
through two interim product forms (plate strip and C-shaped section, and two C-shaped sections
on the left in Figure 4.2 for welding assembly into a box beam complex component. The first
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one can be made by performing fillet-welding of a “C” section (interim product form) onto a plate
strip (another interim product), while the second one can be made by butt-seam welding of two
“C” sections (interim product). From a dimensional accuracy control point of view and the interim
products involved (i.e., “C” sections), the second design is clearly a better interim product form since
it only deals with one single “C” sections and enables symmetrically positioned butt seam welds
with respect to two neutral planes (i.e., x−x and y− y planes), which would significantly reduce
welding-induced distortions in the form of “longitudinal bow”. In contrast, welding assembly of
the box component in the first design will not only have to deal with two distinct interim product
forms (plate trip and C section), but also inevitably introduce longitudinal bow distortion with
respect to the x−x axis due to longitudinal shrinkage of the two fillet-welded zones. An additional
advantage of the second design is that it maximizes repetitiveness in the form of “C” sections in the
manufacture of the box components. The right structures shown on the right in Figure 4.2 have
similar issues, especially a lack of symmetry in geometry, structural stability, and supportability.

Figure 4.2: Examples demonstrating the importance of 6S Principles in structure construction.

4.3 Modularity definition and build sequence – a test case: a grand
panel

A grand panel starting from standardized plate (w× l)
A “grand panel” refers to the modern shipbuilding process, where large and prefabricated sections
of a ship are constructed separately and then joined together, reflecting the concept of modular
construction. Compared to traditional shipbuilding methods, which involve building the ship from
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the keel up, the modularity and grand panel-based approach increase quality and efficiency, and
reduce construction time and cost through improved dedication, simplification, repeatability, au-
tomation, and logistics. A schematic of a typical grand panel is shown in Figure 4.3, where the
grand panel (W ×L) is made as an interim product by butt-seam welding of a standardized base
plate size (w× l). W = 8w and L = 4l are respectively the width and length of the grand panel;
w and l are respectively the width and length of the standard base plate. The constructed grand
panels (W ×L) can then be used for the construction of the deck and bulkheads by cutting them to
size. To offset plates in a symmetrical manner across the width direction, a half plate is cut from
a full plate to make the following patterns starting from the bottom all the way to the top of the
grand panel: HFFFH, FFFF, HFFFH, FFFF, HFFFH, FFFF, HFFFH, FFFF, with F representing
a full plate while H represents a half plate.

Figure 4.3: A grand panel (W × L) with 8 rows in the width direction and alternating HFFFH and FFFF patterns
along the length direction. F represents a standardized full base plate, and H represents a half base plate.

In Figure 4.3, the base plates of the predefined grand panel are stacked in staggered patterns in
the width direction to interlock the base plates, distribute loads, and prevent potential cracks from
forming along relatively weak straight vertical welding lines under potentially vertical bending
dominant loads that result in normal stress in the length direction. By sticking to this brick
stacking pattern, the “weaving” of the plates adds significant strength and stability to the grand
panel, with load being transferred across multiple plates and through the stronger plates instead
of concentrating in a single welding line. The horizontal welding lines are allowed to be straight
under the assumption that the normal stress along the width direction is minor as compared with
that along the length direction. It should be noted that the configuration design of the stacking
patterns belongs to the domain knowledge of structural mechanics and fracture mechanics, and is
not a part of the 6S Principles. Instead, the focus of this demonstration is for the given grand
panel with specific plate stacking patterns such as the one shown in Figure 4.3, what is the best
construction sequence that can minimize overall distortion caused by residual stress and strain
during construction?
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6S Principles for the construction of the grand panel
As a set of six general principles for guiding naval ship construction, the 6S Principles can be
seen as a qualitative method at the current stage. Therefore, it will not explicitly provide a
detailed procedure on how to construct a structure from the very beginning to the end. Rather,
it provides an overarching measure of whether a construction is made based on symmetry and
similarity principles. Certainly, many potential construction procedures follow the symmetry and
similarity principles, but not necessarily all these procedures are equal and the best. Instead, if
there are many options, either maximization or minimization must be the underlying mechanism for
performance optimization. Without quantified measures for these principles yet, the 6S Principles
can be understood as a procedure to maximize symmetry and similarity in all possible levels and
scales. In other words, the optimized solutions obtained from the 6S Principles are unique under a
given set of constraints. Based on this understanding, the following 6 executable work steps of the
interim products and associated processes can be defined and illustrated in Figure 4.4, which best
reflect the spirit of the 6S Principles for the interim product requirements in minimizing distortion
and increasing construction quality.

Figure 4.4: The grand panel (W × L) constructed by following the 6S Principles.

Step-1 Cut to size, i.e. 1 , cutting plates of standard size into equally-sized two halves
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by following the similarity (in both geometry and process) and symmetry (in geometry)
principles.

Step-2 Short butt-seam welding I, i.e. 2 , welding the full base and/or half plates into
partial rows by following the similarity (in process) and symmetry (in process) principles.

Step-3 Short butt-seam welding II, i.e. 3 , welding the partial rows into a full row by
following the similarity (in both geometry and process) and symmetry (in both geometry
and process) principles.

Step-4 Long but-seam welding I,i.e. 4 , welding two full rows into 2-row 1/4 panels by
following the symmetry (in geometry) principle.

Step-5 Long butt-seam welding II, i.e. 5 , welding the two 2-row panels into a 1/2 4-row
panel by following the symmetry (in geometry) principle.

Step-6 Grand panel assembly-butt seam welding, i.e. 6 , welding two 4-row 1/2 pan-
els into a complete full grand panel assembly by following the symmetry (in geometry)
principle.

It should be noted that only 4 of the 6S Principles are significantly involved in the grand panel
construction from Step-1 through Step-6, and they are symmetry and similarity in both geometry
or shape and process. The remaining 2 principles, i.e., stability and supportability, are more related
to the physical aspects and conditions, which should be maximized theoretically. In other words,
the symmetry and similarity are evaluated based on certain stability and supportability conditions.

6S-Generative AI solutions for the construction of the grand panel

To compare the constructed build sequence generated by the guidance of the 6S Principles, extensive
AI prompts are conducted with several generative AI tools, e.g., GPT4, UM GPT4.1, UM o4-mini
(reasoning), UM-GPT-Image-1 (image generation), and the procedures generated from various
given prompts are compared. In this report, only three typical prompts, i.e., Prompt-1, Prompt-2,
and Prompt-3, are provided for comparison and for shedding light on the gaps and opportunities.
Table 4.1 shows the key features of the generated grand panels and the estimated matching scores,
which are subjective, between the grand panel construction under the guidance of 6S Principles
and those generated by the generative AI tools. For more details, see the Appendix.

In Prompt-1, the overall dimensions of the grand panel W ×L and the corresponding con-
stituents, i.e., full base plate and half plate, were given. Additionally, the description of the alter-
nating brick stacking patterns: FFFF, HFFFH, was also provided. Finally, the 6S Principles and
similar details about the predefined pattern were also added. The GPT tools generated essentially
the same results as those obtained from the 6S Principle-based grand panel construction. However,
the detailed strategy and algorithms behind the construction sequence were not provided by the
GPT tools. The detailed output in terms of text description is listed in the Appendix for reference.

To further identify the potential gaps and opportunities of the 6S principle and the associated
AI implementations, two additional scenarios were considered: (1) explicitly add the underlying
construction strategy on top of Prompt-1 by using “hierarchical” or other “scaling” mechanisms
and algorithms, Prompt-2, (2) eliminate the description of the brick stacking pattern, and with or
without including the 6S Principles from Prompt-1, that results in Prompt-3.
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In Prompt-2, it is found that with the explicitly added underlying construction mechanisms,
such as “hierarchical” construction procedure or other “scaling” requirements, the generative AI
tools not only provide the same results as the 6S Principles suggested, but also provide the construc-
tion strategy, such as “divide-and-conquer”, and the associated procedure and logic with scaling
concepts, such as assembly, subassembly, sub-panel, super-module etc., see the Appendix.

In Prompt-3, without explicitly setting the brick stacking pattern upfront, the AI tools cannot
generate the desired brick patterns, though certain levels of similarity and symmetry were kept for
minimizing distortion, see the Appendix.

Base full and
half plates

With defined
stacking pattern 6S Principles Scaling Score in

matching
Prompt-1 Yes Yes Yes No 90–100
Prompt-2 Yes Yes Yes Yes 95–100
Prompt-3 Yes No Yes or No Yes or No 40–60

Table 4.1: Key features of the generated grand panels generated by the generative AI tools.

The experience with these AI tools has shown that they are powerful assistants, but their
effectiveness depends heavily on human oversight, the quality of their training data, and the context
of their use. Additionally, the output results varied with the AI tools used, the information in the
prompt, and the time. How to frame the training process and design effective queries by embedding
some of the 6S Principles in using the AI tools is important to get meaningful results for the
comparison study.

4.4 Discussion

First, the 6S Principles provide necessary conditions for shipbuilding, i.e., all well-designed ships
must satisfy the 6S Principles, and the designs that fail to meet the 6S Principles would not meet
the highest quality standard of shipbuilding. However, the 6S Principles at the current stage do
not explicitly provide a specific detailed procedure on how to build ship structures. In fact, there
would be many potential permissible designs that satisfy the 6S Principles, but the shipbuilders
must choose the optimal or best solutions. Mathematically, one possible way to do it is to maximize
the 6S Principles, for example, maximize similarity and symmetry, provided that the 6S Principles
can be quantified. Although the current 6S Principles do not explicitly provide a path to a specific
construction procedure, maximizing similarity and symmetry may lead to the optimized solution
among all candidate pathways. Quantifying similarity and symmetry will be the key to unlocking
the full potential of the 6S Principles, but the current symmetry and similarity assessments in the
engineering community are essentially based on the binary measure system: yes or no. Normalized
continuous similarity and symmetry measures in the range of [0−1] are essential for optimization
and AI implementations.

Similarity measures are often developed using distance measures such as Euclidean and Man-
hattan distances, and similarity is often inversely proportional to distance. Additionally, non-
dimensional similarity measures provide great opportunities to treat multi-dimensional and mixed-
type data in a unified framework. Gower’s distance (Gower, 1971), originally developed in the
chemical field, is such a good potential similarity measure for quantification of 6S Principles. Equa-
tion 4.1 is the similarity measure based on Gower’s distance and equation 4.2 is the normalized
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one.
sijk = 1− |xi−xj |

Rk
, (0≤ si,j,k≪ 1), (4.1)

Si,j =
∑p

k=1wi,j,k si,j,k∑p
k=1wi,j,k

, i, j = 1, . . . ,N, (4.2)

where xi and xj are two entities to be measured for similarity. Rk is the range of kth variable of
feature to be measured, si,j,k is the normalized similarity between the two entities. Si,j is a single
weighted average measure per object pair (i,j) having p descriptors, and wi,j,k is non-negative
weights.

Symmetry can cover reflection, rotation, translation, glide reflection, point, spherical, radial,
and many other possible aspects. The continuous symmetry measure (CSM) ((Zabrodsky et al.,
1992), (Alon et al., 2023)) in the chemical field can be utilized for the quantification of the 6S
Principles. The key concept of CSM is: the amount of a given symmetry in a structure is a
function of the minimal distance that the vertices of the structure must undergo in order for it to
attain the desired symmetry (a normalized root-mean–square deviation from the closest structure
with the desired symmetry). Eqn.(3) and Eqn.(4) provide simple mathematical expressions of the
CSM.

S =
∑N

k=1|Qk−Pk|2∑N
k=1|Qk−Q0|2

, (0≤ S ≤ 1), (3)

Q0 =
∑N

k=1Qk

N
, (4)

where Qi is the vector of vertices in distorted structures, Pk is a vector of the vertices of the
nearest perfectly G-symmetric object (G being a specific symmetry group), and Q0 is the reference
level (coordinate vector of the center mass of the structure). Both these similarity and symmetry
measures can be used to quantify geometry and processes.

Second, by explicitly adding an underlying construction mechanism, such as a hierarchical
construction procedure, an overall “divide-and-conquer” strategy, and the associated cross-scale
implementation can be revealed, as demonstrated by generative AI tools. The scaling-related
terminologies, such as assembly, subassembly, subpanel, super module, etc., generated by the AI
tools indicate that the 6S Principles can benefit from explicitly adding regulation mechanisms and
scaling parameters across different scales or levels.

Third, for more complex naval structures, such as ship bow, stern, and other irregular or curved
hulls, both domain knowledge and quantified 6S Principles need to be considered to determine the
coupled problems of optimized grand panel construction patterns and the corresponding build se-
quence. Advanced AI technology can empower the 6S Principles to fully realize their potential
in naval structural construction. Deep learning has revolutionized many machine learning tasks
in recent years, and it is especially promising for implementing the 6S Principles. Graph Neural
Networks (GNNs) (Wu et al., 2020) are especially attractive for learning over module–interface
graphs, embedding each module’s attribute vector into a latent space that respects connectivity.
Physics-Informed Neural Networks (PINNs) (Cuomo et al., 2022) bring the known physical basis
to the original data-driven AI and provide explainability and interpretability of the results. Kol-
mogorov–Arnold Networks (KANs) (Liu et al., 2024b,a) are certainly intriguing from a theoretical
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standpoint: the Kolmogorov–Arnold representation theorem guarantees that any continuous multi-
variable mapping can be written as sums of univariate (one-dimensional) functions composed with
simple linear forms. KAN can also provide modular and explicit mathematical relationships be-
tween two entities through the edges of the neural networks, which is a much-needed framework for
the 6S Principles-enabled AI implementations. The development of a 6S Principles Guided Neural
Network (6SPG-NN) by effectively embedding the 6S Principles in the AI tools is an important
part of this research. With an established rigorous mathematical framework for generalizing the 6S
Principles and AI implementation as outlined here, the effectiveness in achieving smart modularity
by selecting several more ship structure components can be further demonstrated. The knowl-
edge, procedures, and tools generated from this project will bring significant value to shipbuilding
managers and engineers in improving shipbuilding quality and efficiency.

Finally, the 6S Principles, particularly the similarity and symmetry in both geometry and
process, seem to be universal and can benefit other applications, in addition to manufacturing and
construction. For example, these principles enabled by AI implementation could provide alternative
solutions to complex mechanical and physical problems, such as time-and frequency-domain multi-
axial fatigue (Wei and Dong, 2025b), fluid-structure-interaction and wet vibration (Wei and Dong,
2025c), elastic-plastic deformation and low-cycle fatigue of typical engineering structures (Wei and
Dong, 2025a), and the characterization of load-path nonproportionality effects on fatigue (Wei
et al., 2025), which are still handled diligently with the traditional deterministic methods (Wei and
Dong, 2025a,b,c; Wei et al., 2025). Additionally, the analytical solutions of these problems can be
further used as a baseline to validate the 6S Principles in broader applications.

4.5 Conclusions

This report presented some general historical information and the domain knowledge that led to
the development of the 6S Principles. Through the example of grand panel construction, the 6S
Principles demonstrated it’s capability in suggesting an accurate and efficient construction proce-
dure even without the involvement of domain knowledge for a simple and commonly used naval
ship plate construction pattern. This report also demonstrated the potential significance of the 6S
Principles in meeting the US Navy’s needs in the smart modularity construction of naval structures.
The major observations made in this research can be summarized as follows:

Guided by the 6S Principles, particularly the principles of similarity and symmetry in both
geometry and process, a grand panel with a pre-defined plate construction pattern has been com-
pletely determined without additional domain knowledge. The generative AI tools provide almost
the same construction sequence for the same input in terms of prompts, without providing the un-
derlying mechanisms and algorithms. This clearly demonstrates that the 6S Principles can not only
provide general guidance in principle but also provide the capability to realize a detailed procedure
by following certain underlying optimization mechanisms, for example, symmetry and similarity
maximization.

Quantifying the 6S Principles and introducing algorithms that can maximize similarity and
symmetry for more general scenarios seem to be the necessary next steps in the line of development.
A simple way to do it is to provide a scaling parameter quantitatively regulating the “divide-
and-conquer” strategy across different levels of scale, as demonstrated from the implementation of
“hierarchical” in the AI examples. Additionally, combining domain knowledge and the 6S Principles
seems to be necessary if the naval structures are complex in nature. The development of a 6S
Principles Guided Neural Network seems to enable the AI implementation of the 6S Principles
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and has made a significant difference in smart modularity definition and implementation into the
construction of marine structures.

Appendix: Generative AI Solutions for Grand Panel Construction

Prompt-1: Full Description of the Grand Panel

A base plate has width w and length l. A half base plate has width w and length l/2. The
total width and length of a grant panel are W = 8 ∗w and L = 4 ∗ l, respectively. The grand
panel is constructed by combining the hull and half plates as follows: one row has 4 full basic
plates, and the next row has 3 full plates and 2 half plates. If we use ”F” and ”H” to represent
full and half plate, respectively, then the grand panel is constructed as: [FFFF; HFFFH; FFFF;
HFFFH; FFFF; HFFFH; FFFF; HFFFH]. The plates are connected through butt welding. To
minimize distortion after welding, the following principles need to be followed: Identify similarities
in interim product forms, identify similarities in processes, consider symmetries, shape rigidity,
and support surface. Given the information above, suggest a welding sequence that maximizes
symmetry. Provide answers step by step, for example, how many FF are combined in the first step,
and what sequence a whole row is welded with another row.
GPT4 answers:
To create a welding sequence that maximizes symmetry, we want to distribute heat as evenly as
possible and minimize distortion. Given your row pattern [FFFF; HFFFH; FFFF; HFFFH; FFFF;
HFFFH; FFFF; HFFFH], let’s work through a suggested sequence step-by-step:
### Initial Considerations:
1. **Symmetrical Pattern**: Since each pair of adjacent rows has a symmetrical counterpart, we
need to take advantage of this to manage heat distribution.
2. **Alternating Rows**: Note that full rows (”FFFF”) and alternating rows (”HFFFH”) allow
for symmetry.
3. **Sequential Build**: We should work from the center outward or alternate sides to achieve
balanced tension.
### Suggested Welding Sequence:
#### 1. Assemble Partial Rows:
- **Row 1 (FFFF):**
- Weld plates 1 and 2 together.
- Weld plates 3 and 4 together.
- Weld the pair (1-2) to (3-4).
- **Row 2 (HFFFH):**
- Weld half plate 1 to full plate 2.
- Weld plate 3 to plate 4.
- Weld plate 5 (half) to plate 4.
- Weld plate group (H2) to (3-4H).
#### 2. Assemble Entire Rows:
- Now, combine the subcomponents of the rows:
- Weld Row 1 with Row 2 at the common edge.
- Repeat for subsequent sets of rows in the pattern.
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#### 3. Sequence the Rows:
- **Center Outward Assembly Approach:**
- Begin with the central rows. If you assume the panel has 8 rows (alternating FFFF and HFFFH),
start with welding row segments 3 (FFFF) and 4 (HFFFH) together and do the same for rows 5
(FFFF) and 6 (HFFFH).
- This central approach gives a point of symmetry around which distortion is balanced.
- **Outer Rows:**
- Once central rows are connected, move outward. Combine row 1 (FFFF) with the row 2
(HFFFH) module and the same for row 7 (FFFF) with row 8 (HFFFH).
- Ensure symmetry by alternating welds from the top & bottom pairs (e.g., weld top rows 1 and 2,
then bottom rows 7 and 8).
#### 4. Final Assembly:
- Combine the top composite (Rows 1-2, 3-4) with the bottom composite (Rows 5-6, 7-8).
- Ensure the final weld is done in a back-and-forth manner to distribute heat evenly over the seam.
### Additional Tips:
- Monitor the cooling and adjust the sequence as required.
- Clamp and fixturing to maintain alignment and rigidity.
- Consider pre-heating based on material type to reduce thermal gradient.
This method should provide you with minimal distortion by taking advantage of symmetry and
balanced welding practices. By working outward from the center and balancing welding between
fully symmetrical sections, you can minimize the common issues associated with welding distortion.
Prompt-2: Adding Additional Welding Sequence Mechanisms

A full base plate has width w and length l. A half base plate has width w and length l/2. A
grand panel to be built from the combinations of the full base plates and half base plate has width
W = 8∗w and length L= 4∗ l. If ”F” and ”H” respectively represent full base plate and half base
plate, and the grand panel will be built with the following patterns: first row: HFFFH; second
row: FFFF; third row: HFFFH; fourth row: FFFF; fifth row: HFFFH; sixth row: FFFF; seventh
row: HFFFH; eighth row: FFFF. The plates are welded together to form the grand panel. To
minimize distortion after welding, the following principles need to be followed: identify similarities
in interim product forms, identify similarities in processes, consider symmetries in geometry and
welding process, shape rigidity, and support surface, group technology, clustering technique, and
hierarchical welding process. Given the information above, what is the welding sequence that
can maximize symmetry? Provide step-by-step, detailed answers. Provide a sketch or graphic
illustration of the welding procedure.
Solutions from UM-GPT 4.1
To develop an optimal welding sequence for the grand panel, maximizing symmetry and follow-
ing the manufacturing guidelines you listed, let’s proceed step-by-step. We’ll reference the given
dimensions and constraints:
Given:

Full base plate (F): width = w, length = l
Half base plate (H): width = w, length = l/2
Grand panel: width W = 8w, length L= 4l

Plate arrangement:
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Rows 1, 3, 5, 7: H F F F H
Rows 2, 4, 6, 8: F F F F

There are 8 rows in total, alternating between these two patterns.

Row Plates
1 H F F F H
2 F F F F
3 H F F F H
4 F F F F
5 H F F F H
6 F F F F
7 H F F F H
8 F F F F

Table 4.2: Visual layout (each letter indicates a plate, each row is under the previous).

Key Principles to Follow
Symmetry: Balance weld heat-distribution to minimize distortion.
Grouping/Clustering:Build interim sections with similar geometry.
Hierarchical: Weld subassemblies first, then assemble the grand panel.
Shape Rigidity:Build subassemblies with higher rigidity first when possible.

Step 1: Subassemblies (Interim Products)
Overlapping similarities among the rows allows us to define subassemblies:
Type A Subassembly: One ”H F F F H” row (occurs on rows 1, 3, 5, 7).
Type B Subassembly: One ”F F F F” row (occurs on rows 2, 4, 6, 8).
Construct four A’s and four B’s as interim subpanels:
A 1 = Row 1; A 2 = Row 3; A 3 = Row 5; A 4 = Row 7
B 1 = Row 2; B 2 = Row 4; B 3 = Row 6; B 4 = Row 8

Step 2: Subassembly Construction Sequence
a. Assemble all ”A” rows:

For each A:
Symmetrically weld the two ”H” plates at both ends (start from the center, move outwards).
Weld the 3 ”F” plates in the center together (in order: F2—F3, then F1—F2).
Connect the ’F subassembly’ to the ’H’ plates on both ends.
Weld sequence within a row: Start at the middle ”F” plates, then outward to the ”H” ends.
[Symmetry preserved in each subassembly.]

b. Assemble all ”B” rows:
For each B:
Weld F2—F3 in the middle.
Weld F1—F2, then F3—F4.

Again, start at the center and move outward for symmetry.
Step 3: Grand Panel Assembly (Vertical Stacking/Clustering)

Now, alternate and stack the A and B subassemblies:
Stack as: A 1 (Row 1) + B 1 (Row 2) + A 2 (Row 3) + B 2 (Row 4) + ... + A 4 (Row 7) +

B 4 (Row 8)
Symmetric welding sequence across the height: Weld from both ends and meet in the center
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(i.e., weld A 1 to B 1 at top and bottom, then proceed inward: A 2 to B 2, then meet at the
center).
Step 4: Hierarchical Symmetric Welding Sequence

Detailed Final Welding Steps:
Layout all 8 subassemblies (”A” and ”B”) in order.
Start by tack welding at 4 corners to hold assembly.
Weld at both ends first:
Weld A 1 to B 1 (topmost pair), and A 4 to B 4 (bottommost pair).
Weld next pair inward:
A 2 to B 2, and A 3 to B 3 (moving in from each end toward center).
Finish by welding the central seams simultaneously, if possible (A 2—B 2 to A 3—B 3), main-

taining symmetry.
For each seam, alternate the starting point left/right, and top/bottom, to allow even heat

dissipation and minimal distortion.
Step 5: Symmetric Welding Within the Full Grand Panel

For maximum symmetry within the complete panel:
Divide the panel into left and right halves (vertical axis).
Weld seams and joints on both sides simultaneously (left/right mirroring).
Alternate welding order: start from the center and move outward, then from outward back to

the center.

Stage Components Method (Symmetry)
1 A rows (HFFFH) Center-out, mirror assembly
2 B rows (FFFF) Center-out, mirror assembly
3 Stack A+B rows Top/bottom in, left/right mirror welding
4 Join center Meet at center from both ends/halves
5 Final seams Alternate, mirrored, for thermal balance

Table 4.3: Summary Table of Hierarchical Sequence.

An alternative prompt resulting in similar answers (Group Technology used in GPT-4.1)
Recommended Step-by-step Welding Sequence:
Step 1: Assemble and Weld identical rows as Submodules

Build all HFFFH rows (1, 3, 5, 7):
Lay out H, F, F, F, H in a single line, tightly abutted.
Weld joints between each plate, working from center outwards for symmetry:
Start with center two F’s, weld their joint.
Weld F-H joints on both ends.
Weld remaining F’s (i.e., F to H) on both sides simultaneously.
This maintains symmetry and reduces possible distortion as weld contraction happens evenly

outwards.
Build all FFFF rows (2, 4, 6, 8):

Lay out four F plates.
Weld two center F’s together first, then symmetrically add and weld the outer F’s.

Step 2: Pair Rows into Double-row Supermodules
Take HFFFH (Row 1) + FFFF (Row 2) and weld them together along their matching seams.
Repeat for (Row 3 + 4), (Row 5 + 6), (Row 7 + 8).
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Welds should be made from the center of the seam outward, on both sides, to keep heat input
balanced and maintain flatness.
Step 3: Assemble and Weld Supermodules

Now you have four supermodules, each covering the full panel width (8w × 2l).
Place the first pair of supermodules (1+2 and 3+4) adjacent, align, clamp, then weld their

interface (middle of the panel). Weld from the center line outward symmetrically.
Do the same for the bottom half (5+6 and 7+8).

Step 4: Final Assembly – Combine Halves
Now, weld the two halves (upper and lower; each 8w × 2l) together along the final interface

(a horizontal seam).
Again, weld from the central line outward, ensuring clamping and support for flatness.

Prompt-3: Without Predefined Plate Patterns

A full base plate has width w and length l. A half base plate has width w and length l/2. A grand
panel to be built from the combinations of the full base plates and half base plates has a width
W = 8∗w and a length L = 4∗ l. The plates are welded together to form the grand panel. Given
the information provided above, what is the welding sequence that can minimize the distortion of
the grand panel after welding? Provide a sketch or graphic illustration of the welding procedure.
Solutions from UM-GPT O4-mini (reasoning)

Here’s one practical way to lay out and sequence your welds so that you always “balance” the heat
input around the geometric center of the 8 × 4 panel and thus minimize net distortion. In what
follows we think of your full plates (w × l) and half-length plates (w × l/2) as laid out on a grid
of 4 rows (in the L–direction) by 8 columns (in the W–direction), and we always weld in small
intermittent “blocks,” pairing seams symmetrically about both the center-line in length and the
center-line in width.
1. PREP & TACKING

• Lay all plates in a flat fixture, clamp them so that the grid is held to flatness tolerances.
• Put light tack welds at every intersection, paying special attention to the two central seams

(row 2/3 at column 4/5).
2. WELD THE CENTRAL BAND (row 2 ←→ row 3)

a) Identify the four seams in the center band:
– Seam A: between row 2 & 3 at columns 4–5 (this straddles the mid-width line W/2).
– Seam B: between row 2 & 3 at columns 3–4
– Seam C: between row 2 & 3 at columns 5–6
– Seam D: between row 2 & 3 at columns 2–3 and 6–7, etc.
b) Tack-re-check A, then run two or three short weld “ladders,” alternating left and right of

the center-line, e.g.:
– Weld a 100 mm segment on the left side of seam A
– Jump to the corresponding 100 mm on the right side of seam A
– Back-step and repeat until seam A is complete.
c) Move out to B & C as a pair: weld a 100 mm block on the left side of seam B, then its

mirror on seam C, then back-step, etc.
d) Finally, do D & its mirror on the far side of the center in the same block-and-mirror fashion.

3. ADD THE ADJACENT ROWS You have now welded all of the center-band seams. Next,
weld the seams between row 1 ←→ 2 and between row 3 ←→ 4—again in pairs, always matching
one weld on the “top” half of the panel with its mirror in the “bottom” half:
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• Pair 1: seam (row 1–2 at col 4–5) with seam (row 3–4 at col 4–5)
• Pair 2: seam (row 1–2 at col 3–4) with seam (row 3–4 at col 5–6)
• . . . and so on, moving out toward the edges.
Within each pair, you still use short runs (block welds) and alternate back and forth.

4. FINISH THE OUTER PERIMETER
Once all inboard seams are done, stitch-weld the outer border joints in one continuous loop or

in two halves (left side then right side), again using short segments and alternating top/bottom or
left/right sides to avoid heat build-up.
5. KEY POINTS TO MINIMIZE DISTORTION

• Always start in the geometric center (that first center band of half-length plates).
• Work outward in matched pairs so that each weld’s shrinkage is counteracted by its mirror

weld.
• Keep individual weld runs short (100–200 mm), back-step frequently, and allow cooling

between blocks.
• Reserve the outermost perimeter till last—by then the panel is stiffened by the interior

welds, so final shrinkage has less lever arm.
By following a “center-out, mirror-block” welding sequence, you ensure that heat is introduced
symmetrically and any shrinkage in one zone is immediately balanced by its opposite, thus driving
net distortion toward zero.

Figure 4.5: Two sketches of welding sequence and patterns provided by an AI tool for Prompt-1.

Figure 4.5 shows the sketches generated from UM-GPT-Image-1(image generation) for two similar
prompts. It is clear from the sketches and the corresponding texts showing the steps to generate the
sketches that the brick stacking patterns are not automatically generated, which often require do-
main knowledge such as fracture mechanics and structural mechanics. Without domain knowledge,
the half plate and full plate will not make any difference as long as the full dimension is guaranteed
and certain overall symmetry and similarity are maintained. It should be noted that the procedure
in the text and the two sketches were generated from different sub-platforms of GPT, therefore,
the correspondence between the test and sketch is not guaranteed. Additionally, the output results
are random in nature; for the same input at different times, a little bit of difference in the prompt
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Investigation of the Asymmetric Flow Field
around the Prolate Spheroid using Global
Stability Analysis

András Szabó & Krishnan Mahesh

Global linear stability analysis is utilized to understand the development of the asymmetric
flow around a prolate spheroid. The base flow, the direct modes, the base flow plus the
perturbations, and the skin friction lines are analyzed to characterize the flow. The study of
aspect ratio effects at zero angle of attack establishes that the structure of the asymmetry
is the same whether the axisymmetric body is bluff or more streamlined. Stability of the
flow field around the 6:1 spheroid is then investigated for angles of attack α ∈ [0◦,90◦]
as a function of Reynolds number. Comparison of the low angle of attack results to the
experimental results of Ashok et al. (J. Fluid Mech. 774, 2015, pp. 416-442) shows that
the asymmetry observed in the experiments is similar to the global mode predicted by the
stability calculations. It is conjectured that the experimental asymmetry is triggered by
the weak cross-stream circulating flow. The leading eigenmode is a stationary asymmetric
mode in the angle of attack α ∈ [0◦,65◦] range, while above α = 65◦, the leading mode is
an oscillatory shedding mode. The change from a stationary to an oscillatory instability
between α = 65◦ and 70◦ is linked to the ability/inability of the vortex sheets to roll up
and reattach to the body in the former/latter cases, respectively. The difference in the
separation patterns and the similarity between the eigenmodes indicate that asymmetry
of the flow field is governed by the same mechanism across a wide angle of attack range,
regardless of whether the flow is like a bluff body wake, a streamlined body wake, or
a vortex wake. Previous studies have argued that the asymmetry of vortex pairs emerges
either because of a vortex instability or a separation/reattachment related mechanism; since
the development of the asymmetry cannot be linked to specific features in the separation
pattern in the investigated configurations, our results support the former argument.

Keywords: prolate spheroid, asymmetry, global stability analysis

5.1 Introduction

The prediction of hydrodynamic forces acting on a body in relative motion to the surrounding
fluid has tremendous practical relevance in a wide range of engineering applications. Oddly, when
such a configuration is symmetric, the flow field may be asymmetric (on long time scales) despite
the symmetry of the arrangement. An asymmetric flow field in symmetric configurations has been
observed in the case of diffusers, bumps, jets in crossflow, and wakes of both slender and bluff
bodies, to mention a few examples. Despite its occurrence in a wide range of practically relevant
problems, this phenomenon is not well understood (Williams and Smits, 2025).

In the case of geometries such as the prolate spheroid and the DARPA SUBOFF that mimic the
main characteristics of underwater vessels, although most research did not report any asymmetry,
several recent studies did. At high ReD values (O(105− 106)), large eddy simulations (LES) did
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not find asymmetry in the flow field (Plasseraud et al., 2023; Plasseraud and Mahesh, 2025), while
low Reynolds number direct numerical simulations (DNS) and LES displayed a strong asymmetry
without any perturbation to trigger it. For Re ∈ [1000,8000] at an angle of attack of 45◦, a series
of studies using DNS (Jiang et al., 2014, 2015, 2016; Strandenes et al., 2019a,b; Andersson et al.,
2019) reported an asymmetry in the mean flow without the presence of any external excitation.
Nidhan et al. (2025) reported asymmetry in the wake of the spheroid at an angle of attack of 10◦

degrees and ReL = 30000 (ReD = 5000), when the Froude number was high (the stratification was
weak) in their LES.

Although most experimental research did not report asymmetry in the flow field around the
spheroid, one experimental study did report a very robust flow asymmetry. Ashok et al. (2015)
investigated the DARPA suboff at angles of attack α ∈ [0,4,8,12]◦ and 1.1 · 106 < ReL < 67 · 106.
They documented an asymmetry in the flow field which was robust to variations in the pitch,
yaw, trip wire geometry, level of free-stream turbulence, and surface roughness; furthermore, the
asymmetry was observed in two different models in a water and a wind tunnel. The reason for the
flow asymmetry was unknown.

There are flow configurations that share similarities with the spheroid flow; studying these, one
may gain insight into the dynamics of spheroid flow. One class of problems is the flow field around
slender bodies at an angle of attack, which includes cylinders with a hemisphere/conical/ogive cap,
cones, and delta wings. These flows are characterized by a pair/pairs of counter-rotating vortices
that separate from the body (which has also been reported in the case of the flow around the
spheroid), which, depending on the parameters such as the Reynolds number, angle of attack,
apex angle, leading edge/nose roundedness, tend to be asymmetric. Although these configurations
have a great importance in aerospace engineering, and thus they have been receiving continued
attention in the scientific community, the mechanism underlying the asymmetry of the flow field is
still unknown (Bridges, 2006; Deng et al., 2008; Williams and Smits, 2025).

Asymmetry has also been observed in bluff body wakes — either bodies with axisymmetry (Rigas
et al., 2014) or reflectional symmetry such as Ahmed bodies (Grandemange et al., 2013). In the case
of these flows, even though the mechanism behind the asymmetry is not fully understood, there
are some important observations. It has been found that the stationary asymmetric flow structures
that can be observed in the low Re flow also appear in the high Re case in both the reflectionally
symmetric (Grandemange et al., 2012, 2013) and axisymmetric cases (Rigas et al., 2014, 2016; Zhu
et al., 2025). In addition, these flow structures can be used to derive models that describe the
main parameters of the flow field (Rigas et al., 2015). Recently, Chiarini et al. (2025) used global
stability analysis to identify the active regions of the flow and confirm the stability criterion of the
symmetry loss of axisymmetric wakes conjectured by Magnaudet and Mougin (2007). The criterion
is based on the maxima of the radial derivative of the azimuthal vorticity: the instability originates
from the azimuthal vorticity wanting to follow both the rigid body, but also being transported by
the free stream, which creates large gradients.

The usefulness of low Re linear stability analysis in the case of bluff body wakes suggests that it
may provide insight into the mechanism of flow asymmetries in the other configurations too. Tezuka
and Suzuki (2006) conducted low Reynolds number stability analysis of a 4:1 prolate spheroid at
zero and α = 10◦ angle of attack. They found that in both cases, when the Reynolds number
is increased, the flow becomes unstable to a stationary asymmetric eigenmode. Then, when the
Reynolds number is further increased, the flow starts to produce an additional shedding mode.
They noted that the structure of the asymmetric mode was the same in the two cases; however,
they did not provide an explanation for why the asymmetry arises in the flow field.

Thus, this work investigates the 6:1 prolate spheroid flow using global linear modal stability
analysis for incompressible flow. The calculations are carried out using the open-source finite
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element library FreeFEM (Hecht, 2012). First, the flow around a sphere is investigated to verify
the methodology. Then, starting from the sphere, the aspect ratio of the spheroid is progressively
increased to six in steps of one, and the stability of the flow is characterized. Finally, the angle of
attack of the 6:1 spheroid is varied between 0◦ and 90◦.

The rest of this report is organized as follows. Section 5.2 discusses the problem definition,
modeling assumptions, and the numerical solution techniques. The results of the calculations are
presented in Sec. 5.3: three separate subsections are dedicated to the verification of the implemen-
tation of the modeling equations, the zero angle of attack spheroid while the aspect ratio is varied,
and the angle of attack effects in the case of the 6:1 spheroid. Concluding remarks are drawn in
Sec. 5.4.

5.2 Methodology

Flow configuration and notations
The flow configuration is illustrated in Fig. 5.1, where a rigid spheroid is placed in a uniform in-
compressible flow. The origin of the Cartesian coordinate system in which the results are presented
is located at the center of the spheroid. The x axis is aligned with the major axis of the spheroid; a
change in the angle of attack α corresponds to rotations around the z axis; the ”normal” coordinate
y is perpendicular to the free stream at 0◦ angle of attack and aligned with it at 90◦ angle of attack.
Dimensional quantities are denoted with a hat (□̂), while nondimensional quantities are denoted
with regular letters. In the nondimensionalization of the equations, the velocity scale is the undis-
turbed free stream velocity Û∞, and the length scale is the largest diameter of the cross-section of
the spheroid D, which yields the Reynolds number:

Re = D̂Û∞
ν̂

, (5.1)

where ν̂ is the kinematic viscosity of the fluid.

Figure 5.1: Sketch of the configuration.
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Modeling techniques

Global modal linear stability analysis is utilized in the incompressible limit. In this framework,
the total velocity field is decomposed into a stationary equilibrium solution, called base flow, and
a small amplitude perturbation around the base flow. Let U = [U,V,W ]T and P denote the base
flow velocity and pressure, and u′ = [u′,v′,w′]T and p′ denote the velocity and pressure of the
small-amplitude perturbations. Then, the nondimensional governing equations of the base flow are

(U ·∇)U =−∇P + 1
Re∇

2U, (5.2)

∇·U = 0. (5.3)

Once the stationary equilibrium base flow is obtained, its stability can be assessed using the
linearized Navier-Stokes equations:

∂u′

∂t
+(U ·∇)u′ +(u′·∇)U =−∇p′ + 1

Re∇
2u′, (5.4)

∇·u′ = 0. (5.5)

Since the base flow is stationary, Eq. (5.4-5.5) can be further simplified by seeking the disturbances
in the form

q′(x,y,z, t) = q(x,y,z)eσt +c.c., (5.6)

where q = [u,v,w,p], the complex number σ characterizes the temporal variation of the disturbances
and c.c. stands for complex conjugate. The real part of σ, σr is the growth rate of the disturbances,
and can be used to determine the stability of the flow: if its positive, the flow is unstable, while
negative values correspond to a stable flow. The imaginary part σi is the angular frequency that
characterizes the oscillatory nature of the disturbances. Searching for the disturbances in this
form, in essence, corresponds to utilizing Laplace transform since the coefficients in the linearized
Navier-Stokes equations are homogeneous in time. The ansatz of Eq. (5.6) simplifies the solution of
Eqs. (5.4-5.5): the temporal variation is eliminated, but instead an eigenvalue problem needs to be
solved, so the relevant flow structures can be computed directly. Typically, the few most unstable
eigenvalues are sought at different Reynolds numbers, and the goal is to find the critical Reynolds
number Rec, where the most unstable eigenmode is marginally stable (σr = 0), since this is where
the disturbances reach only small amplitudes, and linear stability analysis is appropriate.

The disturbances in the form Eq. (5.6) can be obtained by solving the modal version of the
linearized Navier-Stokes equations:

σu′ +(U ·∇)u′ +(u′·∇)U =−∇p′ + 1
Re∇

2u′, (5.7)

∇·u′ = 0., (5.8)

which are also called TriGlobal stability equations (Theofilis, 2003). It is also convenient to write
the linearized equations as follows:

σBq′ = Aq′ (5.9)

which clearly shows that finding the disturbances in the form of Eq. (5.6) corresponds to an eigen-
value problem. The elements of the matrices in the equation above of the matrices are straightfor-
ward to derive.
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It is important that the eigenmodes are normalized appropriately. Using the standard inner
product over the computational domain Ω

⟨q1,q2⟩=
ˆ

Ω
u∗

1 ·u2dV, (5.10)

the eigenmodes are normalized so that ⟨q,q⟩= 1 .

Numerical methods
The equations in the previous section are solved using computer programs developed in the open-
source finite element package FreeFEM (Hecht, 2012). The equations are discretized using Arnold-
Brezzi-Fortin MINI-elements (P1b for the velocity components and P1 for the pressure). For each
configuration (aspect ratio and angle of attack), a separate unstructured tetrahedra mesh is created
using the open-source software GMSH (Geuzaine and Remacle, 2009). Creating a separate mesh
for each configuration is necessary to capture the structure of the wake region while keeping to size
of the problem modest. The typical mesh size is between 3−4 ·106 elements.

The equations are solved in a coordinate system (ξ,η,ζ) in which the ξ axis is aligned with the
free-stream, since this simplifies the specification of the boundary conditions; however, the results
are presented in the coordinate system aligned with the spheroid. The rectangular computational
domain, in which the spheroid is placed, is illustrated in Fig. 5.2. The center of the spheroid is
also the center of the computational domain. The spheroid is placed symmetrically in the η and ζ
directions; the sizes of the bounding box are detailed in Table 5.1.

Lξ,0 Lξ,1 Lη Lζ

-15 120 50 50

Table 5.1: The size of the computational domain.

Figure 5.2: The computational domain.

The boundary conditions are the following. At the inlet, the free stream velocity is specified as
the base flow (U = [1,0,0]), and the perturbations are zero (u = 0). At the wall of the spheroid,

75



Investigation of the Asymmetric Flow Field around the Prolate Spheroid using Global Stability
Analysis

no-slip conditions are enforced for both the base flow and the perturbations (U = u′ = [0,0,0]⊺).
On the side wall of the computational box, a free-slip boundary condition is prescribed (the normal
velocity is zero, and the normal derivative of the tangential velocity components is zero). Finally,
at the downstream end of the computational domain, a free-stress condition, which is automatically
satisfied in the finite element formulation, constitutes the boundary condition.

There are two main classes of techniques that can be used to obtain the base flow and the
eigenmodes. The first is the so-called matrix-forming method, and the second is the timestepper
method. In the case of matrix-forming methods, the base flow is typically found using the Newton-
Raphson method, in which the Jacobian is explicitly formed and its inverse is applied using LU
factorization. Then, the matrices of the eigenvalue problem are calculated, followed by calculating
the eigenvalues using the Krylov-Schur method combined with the shift-invert technique. In both
the base flow calculation and the eigenvalue problem, the computational bottleneck is the large
memory requirement of the LU factorization, which limits the problem size to roughly 20 million
unknowns in the case of very sparse matrices. As far as the authors know, although there have
been efforts to develop efficient iterative methods for the inversion of the linearized Navier-Stokes
operator (e.g. Moulin et al. (2019)), they only offer an alternative to direct solver in the low Re
limit (up to Re ≊ 200), which is not sufficient for the present study.

In the timestepper technique, a modified CFD solver is used both to find the base flow and the
eigenmodes. In the case of the base flow, the instabilities can be filtered out by various techniques
(Åkervik et al., 2006; Citro et al., 2017); alternatively, some symmetries can be prescribed that
prohibit the development of the disturbances. In the case of the eigenvalue calculation, advancing
the linearized equations by one timestep of dt corresponds to the application of exp(Adt) restricted
to the velocities, where A in Eq. (5.9). The advantage of the timestepper techniques over the
matrix-forming methods is that they do not have a strong memory requirement that limits the
problem size. However, the timestepper approach requires long simulations, even up to O(100)
convective units, thus they have a strong computational requirement.

Based on the advantages and disadvantages of the two families of methods, similarly to the
studies utilizing the resolvent (input-output) framework (Ribeiro et al., 2023; Rolandi et al., 2024)
for stability analysis, the matrix-forming method is chosen to investigate the stability of the flow.
The Newton-Raphson method and the shift-invert technique, both combined with sparse LU fac-
torization, are used to obtain the equilibrium base flow and the relevant part of the eigenspectrum,
respectively. The matrix forming method requires a sophisticated mesh that is sufficiently refined
at the dynamically relevant regions of the flow, so for each angle of attack and aspect ratio, a
separate mesh was carefully tailored to achieve this goal. The implementation of the Newton and
Krylov-Schur methods in the PETSc (Balay et al., 2021) and SLEPc (Roman et al., 2022) libraries
is utilized in the calculations.

The calculations are performed on the Lighthouse cluster of the University of Michigan Ad-
vanced Research Computing. The simulations are run on 20 nodes, using 48 of the 192 processors
per node. The FreeFEM and PETSc libraries were compiled using Intel compilers and MPI.

5.3 Results

Verification of the implementation
To verify our methodology, critical Reynolds number of the sphere was calculated for an axisym-
metric base flow to find both the first stationary asymmetric mode and also the second shedding
mode that breaks the temporal symmetry (an asymmetric base flow would result in a different
critical Reynolds number for the shedding mode). The critical Reynolds number, which was ob-
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tained by interpolation, is compared to the reference values from the literature in Table 5.2. Our
results match closely with the references, especially with Citro et al. (2016) and Meliga et al. (2009)
(for the first and second bifurcations, respectively) who utilized a finer mesh than Natarajan and
Acrivos (1993).

In addition, the leading eigenmodes of three canonical flow problems are calculated, and the
results are compared with the literature: Poiseuille flow (Juniper et al., 2014), the 3D lid driven
cavity (Giannetti et al., 2009; Gómez et al., 2014; Regan and Mahesh, 2017) and the 4:1 spheroid
at zero angle of attack (Tezuka and Suzuki, 2006). To keep the discussion concise, the comparison
of the results is not presented here, but in all cases, the agreement between our calculations and
the literature is very good.

Natarajan and Acrivos (1993) Citro et al. (2016) Present calculation

First bifurcation 210 212.4 212.1

Natarajan and Acrivos (1993) Meliga et al. (2009) Present calculation

Second bifurcation 277.5 280.7 280.1

Table 5.2: Critical Reynolds number of the first two bifurcations in the case of the sphere.

Effect of varying the aspect ratio

As the first investigation of the asymmetry, the aspect ratio is varied between 1 (sphere) and 6:1
at zero angle of attack. The base flows are calculated over a wide range of Reynolds numbers,
the relevant part of the eigenspectrum of the flow is calculated, and the most unstable mode is
identified. At each aspect ratio, there is a single leading mode, which is a stationary asymmetric
mode, and all other eigenmodes are stable and have low growth rates. This agrees with previous
investigations of axisymmetric bluff bodies (Rigas et al., 2016).

The critical Reynolds number of the first unstable mode as a function of the angle of attack
is displayed in Fig. 5.3. As the aspect ratio is increased and the body becomes more streamlined,
the flow becomes unstable at increasingly higher Reynolds numbers. The recirculation ratio (not
shown for the sake of conciseness) monotonically decreases with an increase in the aspect ratio for
a given Re value. Since recirculation is crucial in the self-sustained global mode as it is responsible
for the feedback of disturbances by convecting them upstream (Chomaz, 2005), the destabilization
of the flow at higher Reynolds numbers when the aspect ratio is increased may be attributed to a
weaker recirculation.

Angle of attack effects for the 6:1 spheroid

In the case of the 6:1 spheroid, the main objective of the present work is to find the first bifurcation
of the flow at every angle of attack to construct a stability chart as a function of α and Re, and
then characterize the modes and the base flow. The stability chart is presented in Fig. 5.4 in the
Re−α plane. The black dots denote where the base flow is stable; the blue and red dots correspond
to stationary asymmetric and oscillatory shedding modes, respectively; the × symbols mark the
marginally stable states, which are approximated by interpolating the growth rate and finding
σr = 0. For the sake of completeness, abscissas with both diameter based ReD and the length based
ReL are presented, and the values of the critical Reynolds number values are tabulated in Tables
5.3 and 5.4.
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Figure 5.3: Critical Reynolds number as a function of the aspect ratio at zero angle of attack.

Figure 5.4: Stability chart of the 6:1 spheroid as functions of the Reynolds number and the angle of attack. The
dots denote parameter combinations at which the stability calculation was carried out. The black dots correspond
to a stable flow; blue and red dots mark stationary asymmetric and oscillatory shedding modes, respectively. The ×
symbols denote the marginally stable states.

A number of interesting trends stand out from the figure. As the angle of attack is increased
from zero, the critical Reynolds number of the stationary asymmetric leading mode continuously
decreases until it reaches 25◦; then, it stays around ReD ≊ 950 in the interval α∈ [25,45]. When the
angle of attack is increased beyond 45◦, the critical Reynolds number starts to decrease drastically,
while the leading eigenmode remains stationary and asymmetric. However, at α = 70◦, the most
unstable eigenmode becomes an oscillatory shedding mode, and no stationary asymmetric mode is
observed in the eigenspectrum. Finally, increasing the angle of attack past 80◦ does not influence
the critical Reynolds number in a meaningful manner: its value stays around ReD ≊ 90.
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Angle of attack 0 5 10 15 20 25 30

ReD 1765.28 1558.95 1278.74 1141.12 1030.27 961.71 969.30
ReL 10591.71 9353.72 7672.46 6846.70 6181.61 5770.29 5815.82

Angle of attack 35 40 45 50 55 60 65

ReD 960.71 945.76 972.38 545.93 304.30 213.48 154.01
ReL 5764.27 5674.54 5834.29 3275.55 1825.78 1280.90 924.08

Table 5.3: Diameter- (ReD) and length-based (ReL) critical Reynolds numbers of the first bifurcation of the spheroid
flow at various angles of attack. Stationary asymmetric mode.

Angle of attack 70 75 80 85 90

ReD 123.55 97.83 89.52 87.40 86.73
ReL 741.31 586.97 537.14 524.39 520.38

Table 5.4: Diameter- (ReD) and length-based (ReL) critical Reynolds numbers of the first of the first bifurcation of
the spheroid flow at various angles of attack. Oscillatory shedding mode.

The calculated critical Re values match the observations of previous studies. In the case of a
6:1 spheroid at an angle of attack of 45◦, Andersson et al. (2019) reported that in the DNS, the
flow around the spheroid was perfectly symmetric at ReD = 800, while at ReD = 1000 a modest
asymmetry was observed, meaning that the asymmetry in the flow field could be discerned only
starting from x/D = 8 downstream of the spheroid (the origin of their coordinate system is at the
center of the spheroid, and the x direction aligns with the undisturbed free stream). The fact that
their observed asymmetry was weak implies that their simulation is close to the neutrally stable
Reynolds number, which matches well with the present prediction of ReD = 972.46.

In the case of the 90◦ spheroid, Khoury et al. (2012) performed DNS at low Re values. They
reported a symmetric flow field at ReD = 75 while at ReD = 100 the flow field was oscillatory, which
agrees well with our prediction of the bifurcation at ReD = 86.73. Nidhan et al. (2025) found using
LES that at 10◦ angle of attack and ReD = 5000 (ReL = 30000 in their paper) the mean flow field
was asymmetric. The Reynolds number of Nidhan et al. (2025) is substantially higher than the one
in this work at α= 10◦, so the agreement between the two studies cannot be considered as a strong
verification; nevertheless the lack of disagreement still serves as a reassurance of the correctness of
the presently utilized modeling framework.

In the following, the skin friction lines on the surface of the spheroid, the base flow, and the
base flow plus the perturbation, as illustrations of the total flow field, are used to characterize the
changes in the flow field around the spheroid. It is important to note that although the other
velocity components are not shown for conciseness, both the base flow and the perturbation are
strongly three-dimensional. For each angle of attack, a case near the critical Reynolds number is
analyzed to describe the flow field near the neutrally stable conditions.

The zero angle of attack case is not shown, as it shares the characteristics of the sphere flow
which is well documented: an axisymmetric, circular separation pattern can be observed in the
skin friction lines, which reattaches at y = z = 0; the base flow is composed of a shear layer that
detaches from the body and reattaches at the aft of the spheroid, forming a recirculation bubble,
and the perturbations displace the flow to one side.

At α = 5◦, the topology of the flow changes compared to the zero angle of attack case, which
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is apparent by examining the skin friction lines that are depicted in Fig. 5.5. In the skin friction
line figures, the x axis is the axial direction, while on the y axis the azimuthal angle φ is presented;
since the base flow is symmetric, only angles in the φ ∈ [0,π] interval are shown. A separation line
(Se1) that is different from the axisymmetric zero angle of attack case is clearly visible at the rear
part of the spheroid. The separation is fed mainly by the upstream flow, but it is also connected
to the recirculation of the wake (Rew). The two separation lines at the two sides of the spheroid
are connected at φ = π by the saddle point Sa1 being their unstable directions, and the stable
directions of Sa1 are the upstream inflow and the wake reverse flow.

Figure 5.5: Skin friction lines of the base flow on the spheroid 6:1 spheroid at an angle of attack of 5◦ near the first
bifurcation at Re = 1550.

Figure 5.6: The axial component of the base flow at x = const. cross-sections. 6:1 spheroid at an angle of attack of
5◦ near the first bifurcation at Re = 1550.

Figure 5.7: The axial component of the base flow plus perturbation at x = const. cross-sections. 6:1 spheroid at an
angle of attack of 5◦ near the first bifurcation at Re = 1550.

Although the separation pattern is located at the aft of the body, it already results in vortices
rolling up downstream of the spheroid, which is clearly highlighted by the axial component of the
base flow presented at successive axial stations in Fig. 5.6. Initially, the velocity profile resembles
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that of a wake; then, moving downstream, the vortex rollup becomes distinguishable. A similar
trend can be observed in the total velocity field shown in Fig. 5.7, which is obtained by adding
the direct eigenmode with a prescribed amplitude to illustrate the change in the structure of the
flow. Initially, the flow field looks like a wake mode, while further downstream it resembles the
well-documented vortex axisymmetry of slender body flows, in which one vortex becomes stronger
and “overcomes” the other. The modes in Fig. 5.7 are compared to the mean streamwise velocity
measurement of Ashok (2014) and Ashok et al. (2015), who investigated the flow field around
the DARPA SUBOFF. The experimental results are presented in Fig. 5.11. Despite the three
orders of magnitude difference in the Reynolds number and the dissimilarities in the configurations,
the qualitative agreement between the stability analysis and the measurement is striking. The
agreement strongly suggests that the asymmetric flow field in the experiments might also be caused
by some kind of imperfection triggering this stationary global mode.

Next, the case with an angle of attack α= 10◦ is discussed. The skin friction lines are presented
in Fig. 5.8. Compared to α = 5◦, significant changes can be observed in the topology of the skin
friction lines. Although the saddle point Sa1, separation region Se1, and recirculation region Rew
can all be identified as at α= 5◦, two new flow features emerge. Below the saddle point Sa1, a stable
focus Fo can be identified, which corresponds to a specific flow separation that may only arise in
three-dimensional flows. This type of separation has previously been observed in the experimental
investigation of 2:1, 3:1, and 4:1 aspect ratio spheroids by Wang et al. (1990). Another new feature
is the saddle point Sa2, which connects the focus Fo and the separation line Se1.

Figure 5.8: Skin friction lines of the base flow on the spheroid 6:1 spheroid at an angle of attack of 10◦ near the first
bifurcation at Re = 1300.

Figure 5.9: The axial component of the base flow at x = const. cross-sections. 6:1 spheroid at an angle of attack of
10◦ near the first bifurcation at Re = 1300.

The base flow presented in Fig. 5.9 shows that a pronounced vortex rollup can already be
observed in the aft of the spheroid at x = 3, and the vortices become even more distinguishable
as they evolve downstream. Regarding the perturbed flow field depicted in Fig. 5.10, similar
observations can be drawn as in the α = 5◦ case. The structure of the flow field is similar to
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Figure 5.10: The axial component of the base flow plus perturbation at x = const. cross-sections. 6:1 spheroid at an
angle of attack of 10◦ near the first bifurcation at Re = 1300.

Figure 5.11: Mean streamwise velocity in the wake of high Reynolds number DARPA SUBOFF experiments (Ashok,
2014, Fig. 4.3. Reproduced with permission).

the vortex asymmetry described in the case of slender bodies, and it is similar to the asymmetry
reported by Ashok (2014) and Ashok et al. (2015); Fig. 4.3 of Ashok (2014) is presented in Fig. 5.11.
The fact that the total flow field is similar to the ones measured by Ashok (2014) and Ashok et al.
(2015) suggests that, despite the three orders of magnitude difference in the Reynolds number and
the dissimilarities configurations (DARPA SUBOFF versus spheroid, differences in the angles of
attack), the same mode was triggered by an imperfection in the experiment that was found solving
the eigenvalue problem. We hypothesize that the weak in-plane velocity in the y direction (Ashok
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Figure 5.12: Skin friction lines of the base flow on the spheroid 6:1 spheroid at an angle of attack of 45◦ near the
first bifurcation at Re = 975.

Figure 5.13: The axial component of the base flow at x = const. cross-sections. 6:1 spheroid at an angle of attack of
45◦ near the first bifurcation at Re = 975.

et al., 2015, Fig. 8) is responsible for exciting the eigenmode in the experiments, since it is an
effect with a clear directionality that can potentially steer the flow into one of the two possible
asymmetric states. Another piece of information that supports this hypothesis is that when the
pitch of the configuration was varied from positive to negative angles (Fig. 5.11), the orientation of
the asymmetry changed: altering the sign of α corresponds to a change in the direction of the side
flow relative to the body. In addition, it is important to note that despite the topological changes in
the skin friction lines and separation patterns, the perturbed flow field is similar in the α= 5◦ and
α= 10◦ cases, implying a continuous change in the flow field with the variation of α and meaning
that the same mode is observed in the two cases.

The change in the flow structure is continuous between angles of attack α = 10◦ and α = 45◦;
thus, for the sake of brevity, only α= 45◦ is presented. The skin friction lines are shown in Fig 5.12.
Although the structure of the flow is more complicated than at α= 10◦, most of the key flow features
are the same in the two cases: the saddle points Sa1 and Sa2, the focus Fo, the separation line
Se1, and the recirculation region Rew are all clearly identifiable. However, there are additional flow
regions that become distinguishable at a higher α. At φ= π, the flow reattaches and becomes the
main reattachment line Re1. In addition to the main separation line Se1, a secondary separation
line Se2 can be observed. Furthermore, the unstable directions of the saddle point Sa2 become
two, clearly distinguishable reattachment lines: upstream, the secondary reattachment line Re2,
and downstream the reattachment line Re3 which is a region of reverse flow, stemming from the
recirculating wake in the aft of the spheroid. Finally, a region of reverse flow ReL is apparent near
the tip of the spheroid, which is a consequence of the fact that the stagnation point moved from
near the tip downstream.
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Figure 5.14: The axial component of the base flow plus perturbation at x = const. cross-sections. 6:1 spheroid at an
angle of attack of 45◦ near the first bifurcation at Re = 975.

In the axial component of the base flow, which is presented in Fig 5.13, the two counter-rotating
vortices can be clearly seen. Initially, as the flow passes the spheroid, the vortices on each side
exhibit a complicated structure having two patches, but as the flow evolves downstream, the two
patches merge into a single coherent vortex. The accelerated flow at the attachment line at z = 0
can also be clearly observed. In the total flow field, displayed in Fig 5.14, the asymmetry is clearly
apparent, and the flow structure is similar to the one reported by Jiang et al. (2014).

The case with α= 50◦ is omitted for the sake of brevity and α= 55◦ is discussed to illustrate the
changes in the flow structure when the angle of attack is further increased. At α= 55◦, the critical
Reynolds number is significantly lower than at α= 45◦: it is Recrit = 304.30, while at α= 45◦ it is
Re = 972.38. Note that the critical Reynolds number starts to decrease at α = 50◦. The decrease
in the Reynolds number with the increase in the angle of attack indicates the strong susceptibility
of the flow to asymmetry. The destabilization of the flow with the angle of attack in the case of the
spheroid aligns with the observations made in the case of slender bodies: when the angle of attack
is increased, beyond a certain angle of attack, the asymmetry becomes much more pronounced
(Bridges, 2006).

The skin friction lines are presented in Fig. 5.15. The continued increase in the angle of attack
simplifies the topology of the flow. The secondary separation and reattachment lines (Re2, Re3 and
Se2), which are relatively close at α= 45◦, are no longer present: as the angle of attack increases,
they come closer together, then merge, eliminating themselves and also destroying the saddle point
Sa2 and focus Fo. The gradual coalescence of the secondary separation and reattachment lines is
clearly visible at α = 50◦, but not shown for the sake of conciseness. As a result of the merging
process, only the main separation line Se1 and the reattachment line at Re1 at φ = π remain,
along with the saddle point Sa1 and the reverse flow region ReL near the tip of the spheroid. The
region of reverse flow Rew can also be observed: it is located near where previously the secondary
separation and reattachment lines were present at a lower α value, and it connects the separation
and reattachment lines (Se1 and Re1).

Regarding the rest of the flow features, the axial base flow velocity and the axial total velocity
presented in Figs. 5.16 and 5.17, respectively, most of the flow features are the same as in the
α = 45◦ case. However, there are also differences in the flow field. The vortex pair occupies a
much larger region in the y direction, and the structure of the vortex is also simpler (c.f. x= 3 in
Figs. 5.13 and 5.16), which is likely connected to the simplification of the separation pattern that is
apparent in the skin friction lines. Examination of the total flow field suggests that the same mode
can be observed at α = 45◦ and α = 55◦. Although, because of the difference in the color scales,
the similarity may not be apparent at first glance, comparison with α= 50◦ (not shown) supports
that the modes are the same. So, despite the remarkable changes in the separation pattern, our
analysis shows that the same asymmetric mode is present in both configurations.
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Figure 5.15: Skin friction lines of the base flow on the spheroid 6:1 spheroid at an angle of attack of 55◦ near the
first bifurcation at Re = 300.

Figure 5.16: The axial component of the base flow at x = const. cross-sections. 6:1 spheroid at an angle of attack of
55◦ near the first bifurcation at Re = 300.

Next we consider α= 65◦ and α= 70◦, focusing on the discrepancies between the two cases to
unveil why the most unstable mode is a stationary asymmetric and an oscillatory shedding mode in
the two cases, respectively. First, the case α= 65◦ is analyzed, where the critical Reynolds number
drops further to Re = 154.01. The skin friction lines are presented in Fig. 5.18. The primary
separation line Se1, the reattachment line Re1, the reverse flow region Rew on the leeward side, the
reverse flow ReL near the tip, and the saddle point Sa1 can all be identified as before. However, a
new feature, a source So can be found near x≊ 2.4, which marks a closed recirculation region, and
is a characteristic of wakes of bluff bodies.

There are further signs that the flow around the spheroid starts to become more wake-like. The
saddle point Sa1 moves upwards along the axis of the spheroid, thus the recirculation occupies a
larger portion of the surface. In addition, both in the case of the attachment line at φ= 0 and the
reattachment of the flow (Re1), the flow starts to get more aligned with the azimuthal direction
instead of the axial one. This suggests that the evolution of the flow cannot be solely interpreted by
examining successive axial locations: the azimuthal direction tends to dictate the dynamics more
than the axial one. Furthermore, the extent of the reattachment in the axial direction (Re1) is
shorter, which implies that although the flow above the spheroid dives behind the spheroid, which
plays a role in the rollup of the vortices, this effect is less pronounced than in the case of lower
angles of attack.

The fact that the flow starts to exhibit wake-like behavior is also apparent in the plots of the
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Figure 5.17: The axial component of the base flow plus perturbation at x = const. cross-sections. 6:1 spheroid at an
angle of attack of 55◦ near the first bifurcation at Re = 300.

Figure 5.18: Skin friction lines of the base flow on the spheroid 6:1 spheroid at an angle of attack of 65◦ near the
first bifurcation at Re = 160.

base flow presented in Fig. 5.19. The vortex rollup in shear layers is less pronounced than at
α= 55◦ (Fig. 5.16), and flow starts to be reminiscent of the wake behind a cylinder at low Re. The
difference between the vortex- and wake-like regions can be observed between the axial stations
x < 2 and x ≥ 2: in these two flow regions, which are separated by the saddle point Sa1 the skin
friction lines in Fig. 5.18, display reattachment with axial flow in the x direction and wake-like
reattachment with reverse flow, respectively.

Despite the fact that the flow field displays wake-like characteristics which imply a shedding-
type instability, the eigenmode that first becomes unstable is a stationary asymmetric one, which
is apparent by examining Fig. 5.20. The main features of the total flow field remain similar to
α = 55◦: the flow is displaced to one side, and along the axis the amplitude of the disturbance
becomes more pronounced.

Next, the skin friction lines for the α = 70◦ case are presented in Fig. 5.21. Almost all the
main flow features are the same as in the case of α= 65◦; yet, there is one major difference which
explains why in this case the leading eigenmode is a shedding mode. The saddle point Sa1 moves
backwards along the x axis, and it is very close to the tip of the spheroid. Thus, there is almost no
vortex rollup and reattachment that was still present at α= 65◦ (Re1 in Fig 5.18). Therefore, the
flow behaves like a bluff body wake, and a sufficiently high Re starts to display vortex shedding.
The total flow field of the axial flow presented in Figs. 5.23 clearly illustrates the shedding behavior
by showing the well-known characteristics of an oscillatory wake mode.

The conclusion drawn from the comparison of cases with α = 65◦ and α = 70◦ is the following
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Figure 5.19: The axial component of the base flow at x = const. cross-sections. 6:1 spheroid at an angle of attack of
65◦ near the first bifurcation at Re = 160.

Figure 5.20: The axial component of the base flow plus perturbation at x = const. cross-sections. 6:1 spheroid at an
angle of attack of 65◦ near the first bifurcation at Re = 160.

conjecture: the reason for the stationary asymmetry is that coherent vortices are sufficiently close
to each other, since the lack of vortex rollup is the major difference between cases with α= 65◦ and
α = 70◦. This, in essence, supports the argument of Keener and Chapman (1977), who suggested
that the vortices need to be “crowded” together for the asymmetry to be able to develop. Reflecting
on the low α cases, an axisymmetric wake can be thought of as a vortex ring at the aft of the rigid
body, which is generated by the flow that surrounds the body. Thus, this conjecture does not
contradict the changes in the flow topology at low α values; on the other hand, the low α flow
topology supports this conjecture.

Increasing the angle of attack further past α = 70◦ does not induce significant changes in the
characteristics of the flow; therefore, for the sake of conciseness, no figures are shown, and only
the main trends are reported without displaying the flow field. Continuing to increase the angle
of attack slightly lowers the critical Reynolds number (see Table 5.4), but the changes are minor.
The structure of the base flow and the modes, consequently, is also subject to only small changes:
whereas at lower angles of attack, the modes are localized higher axial coordinates, they gradually
move backward along the x axis with the increase of α until the core of the dynamics is located
around x= 0.
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Figure 5.21: Skin friction lines of the base flow on the spheroid 6:1 spheroid at an angle of attack of 70◦.

Figure 5.22: The axial component of the base flow at x = const. cross-sections. 6:1 spheroid at an angle of attack of
70◦ near the first bifurcation at Re = 125.

5.4 Conclusion

This study is concerned with characterizing the first bifurcation of the flow around the 6:1 spheroid
at low Reynolds numbers while the angle of attack is varied to gain a deeper understanding of
how flow asymmetries arise in symmetric flow configurations. An efficient modeling framework
was established using the matrix forming technique, the Newton-Raphson method to find the
equilibrium base flow, and the shift-invert technique combined with the Krylov-Schur method to
calculate the relevant part of the eigenspectrum. The application of the inverse operators in both
cases is carried out using a sparse LU factorization library. A new set of codes was developed
using the FreeFEM finite element library, and the implementation was verified in the case of the
lid-driven cavity, channel flow, and the flow around the sphere and 4:1 spheroid at zero angle of
attack.

First, the aspect ratio of the spheroid was varied from 1:1 to 6:1 at zero angle of attack, and it
was found that the leading eigenmode is a stationary asymmetric mode, which shares the features
of axisymmetric wakes. The critical Reynolds number of the leading mode increases monotonically
with the aspect ratio, which is linked to the more streamlined shape of the body and weaker re-
circulation. Then, the effect of changing the angle of attack is investigated in the case of the 6:1
spheroid, and the stability map of the flow is constructed. Below α = 70, the first unstable eigen-
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Figure 5.23: The axial component of the base flow plus perturbation at x = const. cross-sections. 6:1 spheroid at an
angle of attack of 70◦ near the first bifurcation at Re = 125.

mode is a stationary asymmetric mode; for α≥ 70◦, the leading instability is an oscillatory shedding
mode. The observations that beyond a certain angle of attack, vortex shedding is preferred instead
of a stationary asymmetry, and at a certain angle of attack, the flow becomes more susceptible
to asymmetry, which is reflected by a drop in the critical Reynolds number, shows that the flow
around the spheroid shares the characteristics of the flow around other slender bodies (Bridges,
2006).

At various angles of attack, the flow fields are analyzed near the critical Reynolds number by
examining the skin friction lines to characterize the separation pattern, the axial component of
the base flow, and the axial component of the total velocity field (base flow plus the leading mode
with a prescribed amplitude). It is found that despite the changes in the flow field as the angle
of attack is increased — from an axisymmetric wake to vortices rolling up with a complicated
separation pattern, whose structure becomes simpler as the angle of attack is increased — a large
number of flow fields can support asymmetry. In addition, as the angle of attack is changed, the
structure of the asymmetry changes continuously, implying that the same mode, resulting from the
same mechanism, is observed. The common feature of the flow fields is that when long time-scale
asymmetry is observed, stationary vortices with opposing signs can interact. When vortex shedding
is observed, the separating flow does not reattach to the body, so no concentrated vortex patches
are formed, and the flow looks like a cylinder wake. At low α, the axisymmetric wake can be
thought of as a vortex ring attached to the aft of the body, which makes the α= 0 limit consistent
with the observation that asymmetry is related to the interaction of vortices with opposing signs.
The observation regarding the relation of the vortex rollup to asymmetry supports the hypothesis
of Keener and Chapman (1977) that the vortices need to be closely “crowded” for the asymmetry
to develop.

The total flow field obtained by adding the perturbation to the base flow looks remarkably
similar to the asymmetry in the experiments of Ashok et al. (2015) (also Ashok (2014)), despite
the difference in the geometry and the three orders of magnitude difference in the Reynolds num-
ber. We conjecture that the weak in-plane flow in one direction is responsible for triggering the
asymmetric mode, since varying the sign of the pitch changed the orientation of the asymmetry in
the experiments.
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F. Gómez, R. Gvmez, and V. Theofilis. On three-dimensional global linear instability analysis of flows with standard
aerodynamics codes. Aerospace Science and Technology, 32:223–234, 2014.

M. Grandemange, O. Cadot, and M. Gohlke. Reflectional symmetry breaking of the separated flow over three-
dimensional bluff bodies. Physical Review E, 86:35302, 2012.

M. Grandemange, M. Gohlke, and O. Cadot. Turbulent wake past a three-dimensional blunt body. Part 1. Global
modes and bi-stability. Journal of Fluid Mechanics, 722:51–84, 2013.

F. Hecht. New development in freefem++. Journal of Numerical Mathematics, 20(3-4):251–266, 2012.

F. Jiang, J. P. Gallardo, and H. I. Andersson. The laminar wake behind a 6:1 prolate spheroid at 45° incidence angle.
Physics of Fluids, 26:113602, 2014.

F. Jiang, J. P. Gallardo, H. I. Andersson, and Z. Zhang. The transitional wake behind an inclined prolate spheroid.
Physics of Fluids, 27(9):093602, 2015.

90



References

F. Jiang, H. I. Andersson, J. P. Gallardo, and V. L. Okulov. On the peculiar structure of a helical wake vortex behind
an inclined prolate spheroid. Journal of Fluid Mechanics, 801:1–12, 2016.

M. P. Juniper, A. Hanifi, and V. Theofilis. Modal stability theory: Lecture notes from the FLOW-NORDITA Summer
School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013. Applied Mechanics Reviews,
66, 2014.

E. R. Keener and G. T. Chapman. Similarity in vortex asymmetries over slender bodies and wings. AIAA Journal,
15:1370–1372, 1977.

G. K. E. Khoury, H. I. Andersson, and B. Pettersen. Wakes behind a prolate spheroid in crossflow. Journal of Fluid
Mechanics, 701:98–136, 2012.

J. Magnaudet and G. Mougin. Wake instability of a fixed spheroidal bubble. Journal of Fluid Mechanics, 572:
311–337, 2007.

P. Meliga, J. M. Chomaz, and D. Sipp. Unsteadiness in the wake of disks and spheres: Instability, receptivity and
control using direct and adjoint global stability analyses. Journal of Fluids and Structures, 25:601–616, May 2009.

J. Moulin, P. Jolivet, and O. Marquet. Augmented Lagrangian preconditioner for large-scale hydrodynamic stability
analysis. Computer Methods in Applied Mechanics and Engineering, 351:718–743, 2019.

R. Natarajan and A. Acrivos. The instability of the steady flow past spheres and disks. Journal of Fluid Mechanics,
254:323–344, 1993.

S. Nidhan, S. Jain, J. L. Ortiz-Tarin, and S. Sarkar. Stratified wake of a 6:1 prolate spheroid at a moderate pitch
angle. Journal of Fluid Mechanics, 1009:A58, 2025.

M. Plasseraud and K. Mahesh. Vortex topology in the lee of a 6:1 prolate spheroid. arXiv preprint arXiv:2507.03187,
2025.

M. Plasseraud, P. Kumar, and K. Mahesh. Large-eddy simulation of tripping effects on the flow over a 6:1 prolate
spheroid at angle of attack. Journal of Fluid Mechanics, 960:A3, 2023.

M. A. Regan and K. Mahesh. Global linear stability analysis of jets in cross-flow. Journal of Fluid Mechanics, 828:
812–836, 2017.

J. H. M. Ribeiro, C.-A. Yeh, and K. Taira. Triglobal resolvent analysis of swept-wing wakes. Journal of Fluid
Mechanics, 954:A42, 2023.

G. Rigas, A. Oxlade, A. Morgans, and J. Morrison. Low-dimensional dynamics of a turbulent axisymmetric wake.
Journal of Fluid Mechanics, 755:R5, 2014.

G. Rigas, A. S. Morgans, R. D. Brackston, and J. F. Morrison. Diffusive dynamics and stochastic models of turbulent
axisymmetric wakes. Journal of Fluid Mechanics, 778:R2, 2015.

G. Rigas, L. Esclapez, and L. Magri. Symmetry breaking in 3D wakes. In Proceedings of the Summer Program.
Center for Turbulence Research, Stanford University, 2016.

L. V. Rolandi, J. H. M. Ribeiro, C. A. Yeh, et al. An invitation to resolvent analysis. Theoretical and Computational
Fluid Dynamics, 38:603–639, 2024.

J. E. Roman, C. Campos, L. Dalcin, E. Romero, and A. Tomas. SLEPc users manual. Technical Report DSIC-II/24/02
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Surface Roughness Influences Vortex Interactions
and Jet Stability in Pitching Foils in Quiescent
Flow

Lokesh Silwal, Rodrigo Vilumbrales-Garcia, & Anchal Sareen

This study investigates the impact of surface indentations shaped as dimples on the flow
dynamics of a pitching foil under zero-freestream conditions. A series of systematic experi-
ments were conducted employing flow field measurements using Particle Image Velocimetry.
The dimple depth ratio (d/D, where d is the dimple depth and D is the dimple diameter)
was varied from 0.022 to 0.088 across Reynolds numbers (Re = VT Emaxc/ν, where VT Emax

is the maximum trailing edge velocity, c is the foil chord, and ν is the fluid kinematic vis-
cosity) of 3700, 10000 and 20000. The impact of dimples on the wake characteristics was
evaluated by analyzing the time-averaged jet behavior and vortex dynamics. The results
reveal that the deepest dimpled case modified the far wake of the pitching foil, particularly
at higher Reynolds numbers. Under these conditions, the vortices shed from the trailing
edge persisted longer, and the jet exhibited greater coherence. The dimples appear to in-
fluence dipole interactions in the wake, reducing the jet deflection. These findings suggest
that surface roughness can be strategically employed to modulate wake dynamics and im-
prove the stability of the jet, potentially enhancing the propulsion efficiency of bio-inspired
flapping foil systems.

Keywords: flow-structure interaction, vortex dynamics, swimming/flying

6.1 Introduction
Flapping foils have been shown to be efficient propulsors and when their kinematics are properly
tuned, large amounts of thrust can be achieved with high efficiencies, comparable to rotary tur-
bines (Anderson et al., 1998). The main parameter that governs the propulsive efficiency and wake
characteristics of a flapping foil is the Strouhal number (St=Af/U∞), where A is the characteristic
width of the jet flow created, f is the oscillation frequency, and U∞ is the free-stream flow velocity.
Previous work has shown that the most efficient propulsion is achieved for values of St between
0.25 and 0.4 for heave amplitude to chord ratios of order one and the maximum pitching angles
between 15◦ to 25◦ (Anderson et al., 1998; Lagopoulos et al., 2019; Mackowski and Williamson,
2015).

In this range of St, leading edge vortices (LEVs) with moderate strength are formed that
interact with trailing edge vortices (TEVs) to form a reverse von Kármán street. The phase angle
between the heave and pitch motions is the critical parameter affecting the timing of formation
and shedding of LEVs. These flow features add momentum in the wake, in contrast to the drag
producing von Kármán street, which creates a momentum deficit. As St increases beyond 0.4,
the propulsion efficiency drops, and the wake structures no longer exhibit the reverse von Kármán
street. For St > 0.5, the foil produces four vortices per cycle, with two dipoles of counter-rotating
sign (Anderson et al., 1998; Godoy-Diana et al., 2008). The formation of the dipole has been shown
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to induce wake deflection, which leads to a loss of efficiency caused by a lower thrust generation
(Godoy-Diana et al., 2008, 2009; Gursul and Cleaver, 2019; Zhong and Quinn, 2024). At St=∞,
corresponding to a zero-free-stream condition, wake instabilities, such as deflection, can be expected
to intensify. Shinde and Arakeri (2013) studied a pitching foil in quiescent flow and observed a wake
characterized by random meandering and a lack of coherence. These wake characteristics resulted
from destructive interactions between closely-spaced trailing edge vortices due to the absence of
freestream convection. Consequently, the strength of the jet was reduced, leading to reduced
propulsive performance of the foil (Shinde and Arakeri, 2018).

Several strategies have been developed to limit wake deflection and meandering at St=∞, all
incorporating foil flexibility. Previous studies (Shinde and Arakeri, 2013, 2014, 2018; Heathcote
and Gursul, 2007; Heathcote et al., 2008) have shown that incorporating a flexible trailing-edge
flap can significantly alter the wake dynamics. The higher motion amplitude, resulting from the
flap’s flexibility, prevents vortex clustering, reducing destructive interactions and suppressing jet
meandering. This promotes the formation of a reverse von Kármán street, improving thrust pro-
duction. By analyzing various flap stiffnesses, the authors (Shinde and Arakeri, 2014) found that
optimizing flap stiffness could enhance mean thrust by up to 50%.

The effect of surface texture modifications on flapping foils has also been explored as a strategy
to enhance thrust production and propulsion efficiency. Oeffner and Lauder (2012) tested short-fin
mako shark skin samples on both rigid and flexible flapping plates. They found that while shark
denticles reduced the propulsive effectiveness of the rigid plate, they increased the swimming speed
of the flexible plate by 12%. However, it remains unclear whether the kinematics were consistent
across test cases. Later, Wen et al. (2014) examined an undulating plate covered with 3D-printed
denticles scaled 100 times larger than natural denticles and reported a 6.6% increase in efficiency.
Again, the consistency of kinematics between smooth and rough surfaces was not clearly stated.
Another study by Guo et al. (2021) investigated the effect of biomimetic shark skin in dynamic
flow separation conditions (maneuvers) and found that local roughness may mitigate boundary layer
separation through instantaneous modification of the local pressure-gradient distribution. For the
accelerating shark skin, a substantial decrease in the size of the shear layer and remarkable differ-
ences in the near-wake velocity distribution were observed due to the combination of acceleration
and the presence of shark skin.

To investigate the interaction between kinematics and surface roughness shaped as an egg
carton, Massey et al. (2023) conducted high-resolution simulations of a self-propelled swimming
plate at a transitional Reynolds number of Re= 12000. By matching the kinematics of rough and
smooth plates, they found that roughness can reduce the required swimming power and decrease the
unsteady amplitude of forces. Their results highlighted a nonlinear interaction between roughness
and kinematics, demonstrating that findings from static roughness studies do not directly translate
to unsteady swimmers. This idea was further reinforced by Vilumbrales-Garcia et al. (2024), who
examined the effect of generic semi-hemispherical bumps on purely pitching foils. They found that
unsteady flapping systems exhibit greater robustness to surface roughness variations, reporting
no performance improvements for rough pitching foils compared to smooth foils. Additionally,
they observed that protruding roughness increased form drag, resulting in a drag penalty rather
than a propulsive benefit. These studies on the effect of surface protrusions on flapping foils
and plates underscore the importance of optimizing the shape and size of roughness elements to
achieve meaningful performance gains. While surface roughness has shown potential for enhancing
propulsion efficiency, its effectiveness depends on careful tuning of the roughness elements to foil
kinematics and flow conditions. Furthermore, whether these benefits extend to quiescent flow
remains an open question.

Surface indentations shaped as dimples have also shown effectiveness in improving aerodynamic
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and hydrodynamic performance for flat plates and static airfoils. For example, van Nesselrooij et al.
(2016) observed a 4% drag reduction for a flat plate with dimples arranged in a staggered pattern.
In that study, the dimple depth-to-diameter ratio was 2.5%, with a coverage area ratio of 33%,
and the most significant drag reduction occurred at a Reynolds number of 40,000. Similarly, Ali
et al. (2024) investigated a static airfoil (NACA 65(3)−218) with three rows of staggered dimples
placed at 15%, 50% & 85% of the chord length. The Reynolds number based on the chord was
250000. The study found that dimples reduced drag by up to 6.6% without negatively affecting
lift. This improvement was attributed to the dimples energizing the boundary layer, which delayed
flow separation and reduced pressure drag. In addition to improving aerodynamic performance,
dimples have been shown to influence small-scale vortical structures and reduce acoustic signatures
in static foils (Ananthan et al., 2022; Kumar et al., 2024). These results suggest that dimples can
modify boundary layer behavior and vortex shedding characteristics in unsteady flows, such as those
encountered in flapping foil configurations. Despite this, the effects of dimples on the wake dynamics
and propulsive performance of flapping foils have yet to be explored. Furthermore, whether these
benefits extend to quiescent flow remains an open question. To the best of the authors’ knowledge,
there are no reported studies on the effect of surface roughness on flapping foils under quiescent
flow conditions. This study aims to address this gap by systematically investigating the influence
of surface roughness—in the form of dimples—on the wake dynamics of a purely pitching foil in a
quiescent environment. For this purpose, we selected surface indentations rather than protrusions,
and chose dimples over more intricate geometries like shark scales, owing to their simplicity in
design and manufacturing. Dimples also allow for precise control of roughness through variations
in depth. The key unanswered questions are:

• How do dimples influence the wake characteristics of a pitching foil in quiescent flow?

• What is the effect of the Reynolds number (based on maximum trailing edge velocity)?

• How does the dimple depth to diameter ratio impact the flow?

In this study, we conducted systematic experiments to address the aforementioned questions.
Section 6.2 details the experimental methods and operating conditions, while Section 6.3 presents
and discusses the results. Finally, Section 6.4 summarizes our findings and draws conclusions.

6.2 Experimental methods and operating conditions
The experiments were carried out in a water tank with dimensions of (1.22× 0.53× 0.32) m3. A
brief schematic of the experimental setup is shown in Figure 6.1. The pitching motion of the
foil was driven by a StepSERVO motor (Applied motion TSM17P-3AG NEMA 17). The motion
conformity with the design parameters (trailing edge amplitude and motion frequency) was ver-
ified using a rotary optical incremental encoder (E5 US Digital) mounted on the transmission shaft.

A NACA0015 foil with a chord of c = 0.09 m and a span of s = 0.135 m was used as the test
model (see Figure 6.1). Nominal two-dimensional flow characteristics were enforced by enclosing the
wing between the bottom of the tank and a surface plate, ensuring a gap of less than 2%c similar to
previous studies (Fuglsang et al., 1998; Shinde and Arakeri, 2014; Vilumbrales-Garcia et al., 2024).
These boundary conditions are widely used to suppress spanwise flow and tip vortices, effectively
minimizing three-dimensional effects in flapping foil experiments (Quinn et al., 2014; Wong and
Rival, 2015). The planar PIV measurements were performed at the mid-span of the foil to capture
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Figure 6.1: A brief schematic of the experimental setup used in the current study. The figure on the top right
shows the foil actuation assembly and the one on the bottom right shows foil dimensions and details of the dimples
employed.

the core dynamics of the wake under these controlled conditions. For the smooth foil, we observed
no significant signs of large-scale three-dimensional flow features, supporting the assumption of a
nominally two-dimensional wake. It is important to point out that the introduction of dimples could
induce localized three-dimensionality, such as streamwise vortices or spanwise pressure gradients
near the surface. However, it is emphasized that based on the symmetry of the foil and motion, and
the lack of irregularities in the planar wake fields observed, any three-dimensional effects induced by
the dimples is expected to be small in scale and localized, without compromising the interpretation
of the mid-span dynamics.

With current dimensions, the resulting side wall clearance was 8 times the maximum trailing
edge excursion (∆T Emax), the leading edge of the wing was 8 times ∆T Emax from the front wall and
26 times ∆T Emax from the back wall of the hydrodynamic tank. These dimensions are on par with
previous studies conducting pitching foil studies in a quiescent tank facility (Shinde and Arakeri,
2013, 2014).

All four foils were 3D printed with a stereolithography (SLA) resin 3D printer (Form 3, Form-
Labs) with a resolution of 25µm. The first foil, serving as the control case, had a smooth surface
without indentations. For the other foils, the dimple depth was varied as d= 0.15 mm, d= 0.3 mm,
and d= 0.6 mm, while the dimple diameter remained constant at D = 6.75 mm. The dimples were
arranged in a staggered pattern for all cases, since it has been shown that the staggered pattern
offers higher drag reduction in flat plate studies (Veldhuis and Vervoort, 2009; van Nesselrooij et al.,
2016). The dimple depth-to-diameter ratios of d/D = 0.022, d/D = 0.044, and d/D = 0.088, were
chosen with a total surface coverage of 20.27%. This range of dimple depths covers the recom-
mended values from both the flat plate studies (van Nesselrooij et al., 2016) and the static airfoil
studies (Ali et al., 2024). The coverage ratio is inspired from the flat plate studies (van Nesselrooij
et al., 2016).

The foil undergoes sinusoidal pitching motion about a pivot point located at the quarter-chord
from the leading edge. The motion is described as θ = θmaxsin(2πft) with a fixed maximum pitch
amplitude of θmax = 15◦. The frequency f is varied at 0.37, 1 and 2 Hz to change the Reynolds
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Dimple depth ratio (d/D) Re Coverage ratio θmax

0.022 3700, 10000, 20000 20.27% 15◦

0.044 3700, 10000, 20000 20.27% 15◦

0.088 3700, 10000, 20000 20.27% 15◦

Table 6.1: Summary of operating conditions. Here, d is the dimple depth, D is the dimple diameter, Re is the
Reynolds number based on the trailing edge velocity, and θmax is the maximum pitch amplitude.

number (Re). Since this study is conducted under quiescent flow conditions, the Reynolds number
is defined based on the maximum trailing edge velocity following previous studies (Shinde and
Arakeri, 2013):

Re= VT Emaxc/ν

where ν is the fluid kinematic viscosity and c is the chord length. The maximum trailing edge
velocity is calculated as VT Emax = θmax2πfc. The resulting Re are 3700,10000 & 20000, which
are selected based on the operational limitations of the current experimental facility. Flow mea-
surements were conducted using 2D-2C Particle Image Velocimetry (PIV) for all test conditions.
Each test was repeated four times to ensure repeatability. The confidence intervals in the figures
represent the standard deviation (σ) of the mean across the four trials. The summary of these
operating conditions is provided in Table 6.1.

Flow measurements

The flow field was captured using planar Particle Image Velocimetry (PIV) in x−y plane, passing
through the foil’s midspan. The seeding was achieved using 55µm polyamide particles with the
specific gravity of 1.01 g/cm3. The resulting Stokes number (St) for the current flow conditions
is estimated to be 0.02 which is below the recommended value of St ≤ 0.05 (Samimy and Lele,
1991). An Evergreen 200 dual-pulsed laser with a pulse energy of 200 mJ was used to illuminate
the particles. A Photron NOVA R3-4K camera with a resolution of 4096× 2304 pixels2 was used
to capture the PIV images. The camera was equipped with a 60 mm Nikon lens to provide a field
of view of 2.4c×1.2c. A total of 1080 image pairs were captured over 72 seconds at a sampling rate
of 15 Hz for all cases. The time delay between pulses (δt) was optimized for each case to ensure
accurate velocity measurements. The images were captured and processed in DaVis 11 (LaVision)
software. The vector field was obtained by processing the images using the multi-grid, multi-
pass cross-correlation technique with initial and final interrogation window of size 64× 64 pixels
and 24× 24 pixels, respectively, with an overlap of 50%. The resulting vector field had a spatial
resolution of 0.416mm (0.0046c). The uncertainties in the velocity measurements were quantified
using the correlation statistics method (Wieneke, 2015), where the uncertainty is proportional to
the residual positional disparity between the matched correlation peaks (Sciacchitano, 2019). The
resulting uncertainty in the velocity across the flowfield for all cases was ≤ 1% of the average velocity
in the flow field.

The vector fields were post processed in MATLAB for time-averaging, phase-averaging, and
vortex tracking. Phase-averaging was performed using encoder data synchronized with the PIV
measurements. The vortex tracks and their circulation were quantified using the Γ1 and Γ2 criteria,
as given by Graftieaux et al. (2001). The Γ1 criterion was used to identify vortex centers and track
their trajectories. This involves computing the non-dimensional scalar parameter (Γ1) at any point
P in the discrete vector field. The parameter is defined by the following equation:
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Figure 6.2: (a) Time-averaged normalized z-vorticity (ω∗
z = ωc/VT Emax

) contours overlaid with time-averaged stream-
lines (based on velocities in x and y direction) for the smooth foil at Re = 3700. (b) Normalized x-component velocity
at different downstream locations for the smooth foil at Re = 3700.

Γ1(P ) = 1
N

∑
s

(rP M ×UM )ez

∥rP M∥∥UM∥
(6.1)

where S is two-dimensional area surrounding P , M is any other point inside S, UM is the velocity
at point M , and ez is the unit vector normal to the measurement plane.

The Γ2 criterion was then calculated, which identifies regions where the flow is locally dominated
by rotation. For Γ2 values greater than 2/π, the flow is considered to be dominated by rotation,
thus defining the vortex core. The vorticity inside the vortex core is then integrated to quantify
the vortex circulation. The Γ2 criterion is given by the following equation:

Γ2(P ) = 1
N

∑
s

(rP M × (UM − ÛP ))ez

∥rP M∥∥UM − ÛP ∥
(6.2)

where ÛP is the local convective velocity at point P . The variations in the vortex center and the
normalized circulation determined using this technique over the four repetitions were within 4% of
the chord and 5% of the peak normalized circulation, respectively.

6.3 Results and discussions
First, the results of the time-averaged flow characteristics for the smooth foil control case are
presented and compared with the existing literature on foil flapping under quiescent conditions.
Next, the influence of the Reynolds number on the flow characteristics of the control case is analyzed.
Finally, the effects of dimples on flow characteristics are examined.

Wake dynamics of a smooth pitching foil
The results for a smooth pitching foil at Re = 3700 are presented first, as this Reynolds number
closely aligns with the conditions studied by Shinde and Arakeri (2013). The time-averaged flow
field averaged over 50 cycles and further averaged across four independent runs for the smooth
foil, is shown in Figure 6.4a (see 6.4 for the convergence study). Although the motion profile is
symmetric, the wake exhibits asymmetry, with the jet inclined downward and an imbalance in the
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vorticity of the resulting dipole, as depicted in Figure 6.2. Jet deflection is a well-documented
phenomenon in flapping foils operating at St > 1, as reported in previous literature (Jones et al.,
1998; Emblemsvag et al., 2002; Heathcote and Gursul, 2007; Shinde and Arakeri, 2013).

Jones et al. (1998) conducted numerical simulations and experiments on a purely plunging foil
at high St. For St > 1, they observed a dual-mode deflected wake in both cases. For numerical
simulations, the deflection direction was determined by the initial conditions, whereas in experi-
ments, wake-switching occurred randomly. The authors hypothesized that even small disturbances
could trigger wake-deflection switching in experimental measurements. Similar observations were
made by Emblemsvag et al. (2002) in their numerical simulation of a pitching flat plate about the
leading edge at St≈ 1, where the jet deflection direction depended on the initial pitching motion.

These jet characteristics are maximized at the limiting condition of St=∞, which corresponds
to quiescent flow conditions. Heathcote and Gursul (2007) conducted experimental measurements
on a purely plunging foil in quiescent flow conditions and observed periodic variations in the jet
deflection angle, influenced by plunging frequency, amplitude and airfoil stiffness. However, the
flow characteristics of purely plunging and purely pitching motions differ. In the plunging case,
the two trailing edge vortices (TEVs) shed per cycle convect as a vortex dipole and persist over
longer downstream distances (Heathcote and Gursul, 2007). In contrast, in purely pitching motion,
the two TEVs interact destructively in the near wake (Shinde and Arakeri, 2013). Likely due to
these differences, Shinde and Arakeri (2013) observed random wake deflection switching in a purely
pitching foil under quiescent conditions at Re= 3234.

These conditions closely resemble those of the current measurements. However, unlike Shinde
and Arakeri (2013), no switching in the wake deflection angle is observed; instead, the wake consis-
tently inclines downward. Multiple repetitions of the measurements yielded consistent results. To
assess the influence of the initial conditions, the initial motion was reversed, yet the wake remained
deflected downward (see 6.4). For all the repetitions, initially, the wake remained centered for the
first few cycles before settling into a downward-deflected state for the remainder of the cycles, as
shown in the supplementary material S1. Consequently, the time-averaged flow exhibits asymmet-
ric characteristics. The time-averaged jet characteristics were further analyzed by extracting the
streamwise velocity component (x-component) at various downstream locations, as summarized
in Figure 6.2b. The velocity is normalized by the maximum trailing edge velocity (VT Emax). As
the jet develops, the peak velocity occurs around x/c ≈ 0.2, then gradually diminishes at further
downstream locations, reaching zero beyond x/c > 1. These observations are consistent with those
reported by Shinde and Arakeri (2013).

Since the jet remains symmetric for the first few cycles, it suggests that the pitching motion
alone does not introduce an immediate bias. However, the vortex dipole formed in the wake is
inherently unstable, making it highly sensitive to even the slightest perturbations. As the dipole
evolves, any minor asymmetry—whether due to experimental imperfections, background distur-
bances, or nonlinear interactions within the wake—can grow over time, leading to a self-reinforcing
deflection. Once the dipole begins to tilt, the induced velocity from the vortices further destabi-
lizes the symmetric configuration, favoring a consistent downward jet inclination. This process is
similar to symmetry breaking in other unsteady fluid systems, where an initially balanced state
is disrupted by small perturbations that grow due to the system’s inherent instability. This hy-
pothesis aligns with the observation that reversing the initial motion does not alter the deflection
direction—suggesting that the instability, rather than initial conditions, dictates the final wake
asymmetry.
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Figure 6.3: Schematic representation of the flow characteristics observed in the time-averaged wake of a smooth
pitching foil under quiescent conditions.

Reynolds Number effects

The effects of Reynolds number on the flow characteristics of a smooth foil were analyzed, and the
time-averaged flow fields for Re= 3700,10000 & 20000 are shown in Figure 6.4. At Re= 3700, the
wake exhibited noticeable jet asymmetry, a feature that persisted at Re= 10000. Interestingly, at
Re = 20000, the wake became nearly symmetric, indicating that higher Reynolds numbers reduce
the jet’s sensitivity to disturbances that cause deflection at lower Re. At low Reynolds numbers of
Re= 3700, the flow is more viscously dominated, resulting in thicker boundary layer and less coher-
ent separation. These conditions can promote asymmetric shear layer development and unsteady
vortex shedding, which can lead to imbalanced dipoles and deflected jets. Additionally, residual
vortices from previous cycles persist longer in the wake due to slower convection, increasing the
likelihood of dipole-wake interactions that can further exacerbate jet deflection. In contrast, at
higher Reynolds numbers of Re= 20000, the flow becomes more momentum-dominated, boundary
layers are thinner, and separation occurs more sharply and coherently. As a result, vortex shedding
is more symmetric and repeatable, producing stronger but more balanced dipoles that generate a
narrowly focused and stable jet. The faster convection of shed vortices at high Re also reduces
cross-cycle interactions, contributing to reduced jet deflection and improved wake alignment.

Another key observation was the presence of a stagnation region downstream, located around
x/c≈ 1, as indicated by the streamlines. This region forms due to the interaction between the jet
produced by the vortex dipole and the backflow from the far wake region. The backflow results from
low pressure created by fluid entrainment in the near wake by the vortex dipole (see Figure 6.3).
As Re increases, the stagnation region becomes more pronounced, consistent with the expectation
that stronger dipoles at higher Re generate greater backflow.

The presence of a stagnation region suggests that the jet diminishes around the same loca-
tion. This was further investigated by plotting two jet properties: the peak and mean streamwise
velocities in the wake. The streamwise velocities were integrated as

´
y udy, where u is the stream-

wise jet velocity, along y-axis between −0.6c and 0.6c at different downstream locations to extract
the mean streamwise velocity. The results shown in Fig 6.5 reveal two phases of the jet: the
development phase, where the velocity increases to a maximum, and the decay phase, where the
velocity gradually decays to zero. The stagnation region, where velocity approaches zero, is located
around x/c ≈ 1 and remains consistent across all Reynolds numbers. However, Reynolds number
significantly influences velocity magnitudes. At higher Re, the stronger dipole generates higher
jet velocities, accompanied by an increase in induced backflow (see Figure 6.5b). These findings
illustrate the impact of Reynolds number on the wake structures of the baseline case.
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(a) (b) (c)

Figure 6.4: (a) Time-averaged normalized z-vorticity contours overlaid with time-averaged streamlines (based on
velocities in x and y direction) for the smooth foil at (a) Re = 3700 (b) Re = 10000 and (c) Re = 20000.

(a) (b)

Figure 6.5: Development of the (a) peak velocity and (b) mean velocity in the smooth pitching foil wake for Reynolds
number cases of Re = 3700, 10000 and 20000. The shaded region represents the standard deviation of the mean over
the four repetitions.

Effects of dimples

In this section, time-averaged flow field characteristics are analyzed for different dimple depth ratios
and Reynolds numbers. Next, the vortex characteristics and their influence on the time-averaged
flow features are discussed.

Time-averaged flow characteristics

The time-averaged flow characteristics for the three dimpled cases at all Reynolds numbers are
shown in Figure 6.6. When comparing the smooth foil case (Figure 6.4a) with the dimpled cases
(Figures 6.6a, 6.6d, and 6.6g) at Re= 3700, notable differences in the vortex dipole behavior were
observed. For the dimpled cases, the dipoles were more diffused, and the jet inclination was less
pronounced compared to that of the smooth foil. Additionally, the stagnation region observed in
the near-wake of the smooth foil case was absent in the dimpled cases. As the Reynolds number
increased to Re= 10000 & 20000, these effects were only present for the case with the deepest dimple
(d/D = 0.088), while the flow fields for the shallower dimples resembled those of the smooth foil.
Specifically, for d/D= 0.022 and d/D= 0.044, the jet was more inclined, and the stagnation region
appeared around x/c≈ 1. These observations suggest that dimples influence vortex dipole and jet
characteristics, particularly for deeper dimples, as the effects persisted across all Reynolds number
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Figure 6.6: Time-averaged normalized z-vorticity contours overlaid with time-averaged streamlines (based on veloci-
ties in x and y direction) for; dimple depth of d/D = 0.022 at (a) Re = 3700, (b) Re = 10000, (c) Re = 20000; dimple
depth of d/D = 0.044 at (d) Re = 3700, (e) Re = 10000, (f) Re = 20000; dimple depth of d/D = 0.088 at (g) Re = 3700,
(h) Re = 10000, and (i) Re = 20000.

conditions. These effects are further quantified by extracting the peak and mean jet velocities at
different downstream locations, with the results shown in Figure 6.7.

The upper row of Figure 6.7 represents the maximum streamwise jet velocity normalized by the
maximum trailing edge velocity, while the lower row shows the mean streamwise jet velocity for
different Reynolds numbers. At Re = 3700, while the qualitative flowfield characteristics between
the smooth and dimpled foils were different, the differences in the quantitative properties fall
within the margin of uncertainty and can not be discerned. At Re= 10000, the jet characteristics
for the smooth foil and the dimpled cases with d/D = 0.022 & 0.044 were similar. However, the
deepest dimple case (d/D = 0.088) exhibited significantly higher peak velocities during both the
jet development and decay phases (as high as 50% larger than the control foil). Additionally, the
jet was sustained longer for the dimpled case (d/D = 0.088), persisting up to x/c= 2, compared to
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Figure 6.7: Comparisons of peak velocity evolution between smooth foil and dimpled foils with dimple depths of
d/D = 0.022,0.044 & 0.088 at Reynolds numbers of (a) Re = 3700, (b) Re = 10000, and (c) Re = 20000. Comparisons
of mean velocity evolution between smooth foil and dimpled foils with dimple depths of d/D = 0.022,0.044 & 0.088 at
Reynolds numbers of (d) Re = 3700, (e) Re = 10000, and (f) Re = 20000. The shaded region represents the standard
deviation of the mean over the four repetitions.

only x/c= 1 for the smooth foil. The differences between the smooth and dimpled (d/D = 0.088)
foils are substantially larger than the standard deviation of repeated measurements. For example,
the increase in the maximum jet velocity observed for the dimpled foils exceeded the experimental
variability by a factor of 10, indicating that these trends are robust and not attributable to random
fluctuations or measurement noise.

At the highest Reynolds number (Re = 20000), the dimpled cases with d/D = 0.022 & 0.044
showed higher velocities than the smooth foil during the development and decay phases, but the jet
decayed more quickly, reaching zero velocities at a similar location to the smooth case. In contrast,
for the deepest dimple case (d/D = 0.088), the jet velocity during the development phase was
comparable to that of the smooth case, but the decay phase exhibited significantly higher velocities
(again, as high as 50% larger than the control foil), with the jet persisting for a longer duration.
These trends align with the qualitative flow characteristics shown in Figure 6.6. For example,
at Re = 10000, the time-averaged flow fields for the smooth foil (Figure 6.4c) and the dimpled
cases with d/D = 0.022 & 0.044 (Figs. 6.6b, 6.6e, and 6.6h) exhibited similar features, including
jet inclination and the presence of a stagnation region, resulting in comparable jet characteristics.
However, for the deepest dimple case (d/D = 0.088), the vortex dipoles appeared more diffused,
jet inclination was reduced, and the near-wake stagnation region was absent, leading to higher jet
velocities compared to the other cases.

Similarly, at Re = 20000, the stagnation region for d/D = 0.022 & 0.044 cases remained at
approximately the same downstream location as the smooth foil, causing the jet velocity to decay
to zero at a similar location. In contrast, the deepest dimpled case (d/D = 0.088) (Figure 6.6i)
exhibited reduced jet asymmetry and an absence of the stagnation region in the near wake, allowing
the jet to sustain for a longer duration. Due to the lack of stagnation and backflow region in the
d/D = 0.088 case, the mean velocities remained positive even up to x/c= 2, unlike the smooth foil
and dimpled cases with d/D = 0.022 & 0.044.
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Figure 6.8: Comparison of the vortex center tracks at (a) Re = 10000, and (b) Re = 20000 and normalized circulation
(Γ∗ = Γ/VT Emax

c) at (c) Re = 10000, and (d) Re = 20000 between smooth foil and dimpled case (d/D = 0.088).

To summarize the discussion so far, this study demonstrates, for the first time, that dimples can
alter the wake dynamics of a pitching foil in quiescent flow. The findings show that higher dimple
depth ratios (d/D= 0.088) and Reynolds numbers (Re= 20,000) result in reduced jet deflection and
prolonged sustainment of the time-averaged jet. In the following section, the vortex characteristics
are quantified and compared across the different cases to further understand their impact on the
observed flow characteristics.

Vortex dynamics

The flow field was phase-averaged over ten pitching cycles to analyze the vortex dynamics (ten
cycles were deemed sufficient based on the convergence test presented in 6.4). The vortex trajec-
tory and circulation were quantified and compared between the smooth foil and the dimpled foil
(d/D = 0.088), as this case showed significant differences in time-averaged flow characteristics in
the Reynolds numbers tested. The vortex trajectory was tracked by following the vortex center
identified using the Gamma 1 (Γ1) criterion and the circulation was quantified using the Gamma
2 (Γ2) criterion, which are discussed in Sec. 6.2. The results for Re = 10000 and Re = 20000 are
summarized in Figure 6.8.

At Re = 10000, the vortex trajectories differed significantly between the smooth and dimpled
(d/D = 0.088) foils. For the smooth foil, the vortices exhibited greater downward inclination com-
pared to the dimpled case (see Figure 6.8a). The normalized circulation (Γ∗ = Γ/VT Emaxc) plot
revealed a pronounced asymmetry between the shed vortices, which presumably contributed to
the downward deflection of the vortex tracks and the inclination observed in the time-averaged
flowfield (see Figure 6.8c). In this case, destructive vortex interactions (Shinde and Arakeri, 2013)
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led to mutual neutralization, causing jet velocities to decay to near zero in this region. In contrast,
the dimpled foil (d/D = 0.088) exhibited minimal asymmetry, reducing vortex track inclination.
Consequently, both positive and negative circulation vortices propagated further downstream, sus-
taining jet velocity over longer distances. This enhanced downstream convection also eliminated
the stagnation region observed in the wake of the smooth foil.
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Figure 6.9: Characteristics of the modes from the Spectral Proper Orthogonal Decomposition (SPOD) analysis: (a)
Mode 1 at Re = 10000, (b) Mode 1 Re = 20000, (c) Mode 2 at Re = 10000, (d) Mode 2 Re = 20000, (a) Mode 3 at
Re = 10000, (b) Mode 3 Re = 20000. In the x-axis, f/f◦ is the modal frequency normalized by the pitching frequency.

At Re= 20,000, the vortex trajectories for the smooth foil exhibited no significant asymmetry
or inclination, resulting in a largely symmetric time-averaged flow field (see Figure 6.8b). Similarly,
the dimpled foil showed no inclination in its vortex tracks. However, its vortices convected further
downstream compared to those of the smooth foil. Circulation analysis revealed that during both
the development and decay phases, the shed vortices exhibited nearly identical circulation in both
Reynolds number cases. However, vortices shed from the dimpled foil maintained their coherence
longer, convecting farther downstream and sustaining jet velocities over greater distances. These
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trends were also evident in the time-averaged flowfield data. This indicates that the dimples
primarily influence dipole interactions in the near wake.

To quantify the vortex shedding frequency and the energy content, Spectral Proper Orthogonal
Decomposition (SPOD) (Schmidt and Colonius, 2020) was performed for Re = 10000 and 20000. As
most of the energy was contained within the first three modes, the analysis focuses on these modes.
The first mode represents the dominant vortex dipole structure seen in the time-averaged flow field,
while the second and third modes capture the downstream-shed vortices. Comparison of the energy
content among the modes reveals negligible differences in the first mode between the smooth and
dimpled cases (see Figs. 6.9a and 6.9b). However, the dimpled foil exhibits slightly higher energy in
the second and third modes (see Figs. 6.9c, 6.9d, 6.9e, and 6.9f). This supports earlier observations
suggesting that surface dimples influence the vortex interactions in the near wake. The SPOD
frequency spectra further show that the dominant frequencies correspond to the pitching frequency
and its harmonics, with no significant differences between the smooth and dimpled foils. This
aligns with previous findings that the actuation frequency predominantly governs wake shedding
dynamics in pitching foils (Vilumbrales-Garcia et al., 2024; Zurman-Nasution et al., 2021). These
results contrast with bluff body flows, where surface dimples can alter the shedding frequency (Li
et al., 2015).

≈ 𝟎. 𝟐𝒄
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≈ 𝟎. 𝟑𝟖𝒄
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Figure 6.10: Comparison of the instantaneous phase-averaged vorticity field between (a) smooth foil and (b) dimpled
foil (d/D = 0.088) at Re = 10000.

A comparison of phase-averaged vorticity snapshots between the smooth and dimpled foils at
the same instant (see Figure 6.10) for Re= 10000 reveals that the spacing between the shed vortices
increases noticeably for the dimpled case. This observation was consistent for the Re= 20000 case
as well. An increase in vortex spacing can alter vortex-vortex interactions, potentially reducing
destructive interference between counter-rotating vortices, as suggested by prior studies (Shinde
and Arakeri, 2014; Heathcote et al., 2008). The observed change in vortex spacing for the dimpled
foil is attributed to boundary layer modifications induced by the surface roughness. However, the
current measurements are limited to wake dynamics, and a more detailed investigation of the near-
wall flow and boundary layer evolution is necessary to fully understand the underlying mechanisms
driving these changes. Based on the analysis presented in this section, it is conjectured that the
presence of dimples alters the timing of vortex formation or vortex detachment, which in turn
influences the dipole interactions in the wake and contributes to the observed flow modifications.

In summary, the vortex dynamics analysis revealed that although the circulation of vortices shed
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from dimpled foils was comparable to that of the smooth foil, the presence of dimples notably altered
vortex interactions and the evolution of the jet. At Re= 10,000, dimples reduced jet deflection and
enhanced streamwise momentum by up to 50%. At Re = 20,000, while the jet was already more
aligned, dimples further improved its coherence and extended its longevity. Instantaneous vorticity
fields also showed increased vortex spacing in the dimpled case relative to the smooth foil. These
observations suggest that dimples perhaps modify the timing of vortex formation and detachment
by disrupting the boundary layer through localized surface indentations. This presumably leads to
a more coherent and sustained wake with reduced deflection. These findings are consistent with
previous bioinspired studies showing that surface indentations can passively manipulate vortex
shedding to enhance propulsive performance and stabilize unsteady wakes. For example, Oeffner
and Lauder (2012) and Domel et al. (2018) demonstrated that surface textures inspired by biological
swimmers improve wake coherence and thrust. Similarly, Wen et al. (2014) and Mallah et al. (2021)
found that surface roughness elements can modify boundary layer dynamics to delay separation and
regularize vortex shedding. More recently, Guo et al. (2021) and Vilumbrales-Garcia et al. (2024)
showed that passive surface features such as dimples or grooves significantly impact the timing and
strength of trailing-edge vortex formation, improving the spatiotemporal organization of wakes in
unsteady propulsion.

6.4 Summary and conclusions
The influence of surface roughness in the form of dimples on wake characteristics was investi-
gated. The dimples were arranged in a staggered configuration with an area coverage ratio of
20.27%. While the dimple diameter remained constant, the dimple depth was varied as d/D =
0.022,0.044 & 0.088. A smooth foil without surface modifications served as the control case. The
key findings of this study are summarized below:

1. The time-averaged wake of the smooth foil exhibited a vortex dipole near the trailing edge,
with a stagnation region and backflow downstream. The backflow was induced by the low-
pressure region created by the vortex dipole, while the stagnation region resulted from the
interaction between the jet and backflow. The time-averaged jet exhibited two phases: an
initial development phase with peak velocity, followed by a decay phase where the velocity
gradually decreased to near zero.

2. The wake characteristics of the smooth foil varied with Reynolds number. At lower Reynolds
number conditions, the vortex dipole exhibited noticeable asymmetry, and the jet displayed
pronounced inclination. However, as the Reynolds number increased, both the asymmetry of
the vortex dipole and the jet inclination were reduced.

3. The effects of dimples became prominent at higher Reynolds numbers (Re= 10000 and 20000),
especially for the deepest dimpled configuration (d/D = 0.088). Under these conditions, the
deepest dimpled case exhibited higher streamwise jet velocities during the decay phase and
sustained the jet for a longer duration compared to both the smooth foil and the shallower
dimpled cases (d/D = 0.022 & 0.044).

4. The vortex dynamics analysis revealed that the d/D= 0.088 case exhibited weaker destructive
interactions between shed vortices and maintained vortex coherence for a longer duration than
both the smooth foil and the other dimpled configurations. This resulted in a more aligned
jet with reduced deflection and enhanced longevity.
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In conclusion, this study presents the first evidence that surface roughness in the form of dimples
can influence key jet characteristics of the wake in pitching foils under quiescent flow conditions.
These findings are valid at least within the geometric configurations and parameter space investi-
gated in the present study. The effects were found to depend on both the dimple depth ratio and
Reynolds number. The dimples enhanced the jet momentum in the wake, and the vortex dipole
maintained coherence for longer durations. Although direct force or thrust measurements were not
performed in this study due to experimental limitations, prior literature has established a strong
correlation between wake jet coherence and thrust generation in flapping foils (Jones et al., 1998;
Jallas et al., 2017). Based on these established links, we conjecture that the observed improve-
ments in jet coherence and stability due to surface dimples could translate to improved propulsion
efficiency in bio-inspired systems operating in quiescent or hovering conditions. This hypothesis
remains to be tested through future studies involving direct force measurements. Further investiga-
tions are required to assess the broader applicability of these findings to other geometries, actuation
regimes, and flow environments. This study contributes to a growing body of work exploring passive
mechanisms for modifying near-wake dynamics in unsteady flows. By demonstrating that surface
dimples can enhance jet stability and reduce asymmetry in a canonical pitching foil configuration,
the findings offer insights that may inform the design of surface textures in low-speed maneuvering
or hovering propulsion systems, such as those used in small underwater vehicles, aerial drones, or
robotic swimmers.
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Appendix

The influence of the initial condition on the direction of jet inclination for the smooth foil was
examined by altering the direction of the first pitching cycle. The results for the three Reynolds
numbers tested (Re= 3700,10000 & 20000) are presented in Figure 6.11. Despite the modification
in the initial condition, the jet inclination remained downward for Re = 3700 & 10000. For the
Re= 20000 case, the degree of jet inclination was reduced across all cases. These findings indicate
that, within the scope of the current study, the jet inclination is independent of the initial conditions.

Convergence tests for time and phase averaging were conducted by examining streamwise velocity
profiles at downstream locations of 0.25c, 0.5c, and 0.75c from the trailing edge. As shown in
Figure 6.12, the time-averaged velocity profiles for selected cycles of the smooth foil across all
tested Reynolds numbers stabilized after the first ten cycles, with variations remaining within
5%. This validates the use of 50 cycles for time-averaging and 10 cycles for phase-averaging.
This is particularly important for phase-averaging, as time-series data was used in the analysis.
Since the acquisition frequency of the flow field measurements and the pitching frequency were
not synchronized, phase-averaging over a larger number of cycles would have led to high temporal
error propagation due to asynchronous measurements. Limiting the phase-averaging to ten cycles
helped minimize these errors, and the convergence analysis confirms that sufficient convergence was
achieved.
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Figure 6.11: Time-averaged normalized vorticity ω∗
z for a smooth foil with non-inverted initial condition at (a)

Re = 3700, (b) Re = 10000, (c) Re = 20000. Time-averaged flow field for a smooth foil with the inverted initial
condition at (d) Re = 3700, (e) Re = 10000, (f) Re = 20000.
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Figure 6.12: Moving average of the streamwise velocity profile at x/c = 0.25 between pitching cycles of one to thirty-
five at (a) Re = 3700, (b) Re = 10000, and (c) Re = 20000.
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Dynamic Modeling of Cavitation Inception in the
Subgrid Scale of Large Eddy Simulation

Mehedi H. Bappy & Krishnan Mahesh

We present a unified Large Eddy Simulation (LES) framework that dynamically computes
all variables critical to cavitation inception, combining high-fidelity turbulence modeling
and subgrid-scale (SGS) physics. Cavitation onset is determined not only by resolved flow
features and their interaction, but also by rare, extreme low-pressure events driven by un-
resolved turbulence. Recent work by Madabhushi and Mahesh (2025) demonstrates that
capturing the pressure minima responsible for inception requires extremely fine compu-
tational grids; conventional LES at coarser resolutions cannot resolve these intermittent,
intense pressure dips due to inherent spatial averaging. Our approach addresses this lim-
itation by incorporating a dynamic k-equation SGS closure, a statistical SGS cavitation
inception model that utilizes local pressure fluctuations, and a vapor transport equation for
dynamic variation in nuclei density. This integrated methodology enables robust and phys-
ically consistent prediction of cavitation inception in complex turbulent flows, dynamically
reflecting local flow conditions and their fluctuations. Application to vortex interaction in
a canonical twin hydrofoil configuration shows that the framework reliably predicts both
inception location and frequency, even when resolved pressures alone would underestimate
inception probability. The framework’s successful validation across a range of angles of
attack (AOA) further demonstrates its robustness and suitability for predictive engineering
simulation of cavitation onset in turbulent flows at practical computational cost.

Keywords: cavitation inception, SGS modeling, vortex-vortex interaction

7.1 Introduction

The phenomenon of cavitation, characterized by the formation and subsequent dynamic evolution
of vapor-filled cavities within a liquid subjected to sufficiently low local pressures, is a critical area
of study in fluid mechanics. Its occurrence is pervasive across a multitude of engineering disci-
plines, most notably in naval architecture and hydromachinery, where it can precipitate significant
deleterious effects on system performance, structural integrity, and operational longevity (Brennen,
2014; Knapp et al., 1970). In marine applications, for instance, cavitation manifesting on propeller
blades or control surfaces can lead to a marked reduction in propulsive efficiency, induce severe ero-
sive damage, generate unwanted vibrations, and significantly amplify radiated underwater noise,
thereby compromising the acoustic stealth and overall effectiveness of naval vessels (Smith et al.,
2024). Similarly, within the domain of nuclear engineering, cavitation poses substantial risks to
reactor safety and operational efficiency by instigating material erosion, inducing detrimental pres-
sure fluctuations, and impairing heat transfer capabilities in critical components such as primary
coolant pumps, heat exchangers, and condensers (Li et al., 2023). Consequently, a profound under-
standing of the conditions leading to cavitation inception—the initial formation of these vaporous
bubbles—is paramount for the design of robust and reliable hydraulic systems.
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The fundamental physics governing cavitation inception hinges on the interplay between the
local fluid pressure, p, the liquid’s vapor pressure, pv, and the availability of nucleation sites.
Cavitation typically occurs when the local pressure in the liquid drops below its vapor pressure
at a given temperature. This pressure reduction can be induced by high local velocities, such as
those encountered in regions of flow acceleration around hydrofoils, within pump impellers, or in
the cores of intense vortical structures. The susceptibility of a flow to cavitation is often quantified
by the cavitation number, σ, defined as:

σ = p∞−pv
1
2ρU

2
∞

(7.1)

where p∞ is the reference far-field pressure, U∞ is a reference velocity, and ρ is the liquid density
(Brennen, 2014). A lower cavitation number indicates a greater propensity for cavitation. However,
the simple criterion p < pv is often insufficient, as the tensile strength of pure liquids is remarkably
high. In practice, cavitation almost invariably occurs heterogeneously, originating from microscopic
gas nuclei, impurities, or crevices on solid surfaces that act as preferential sites for vapor formation
(Knapp et al., 1970; Brennen, 2014) The size distribution and spatial density of these nuclei, Nd,
play a crucial role in determining the actual inception pressure and the type of cavitation observed
(Bappy et al., 2020).

In many engineering flows of practical importance, particularly those involving lifting surfaces
or shear layers, cavitation inception is intimately linked to the dynamics of vortical structures.
Shear-dominated flows, such as those developing in the wake of hydrofoils, around propellers, or
within mixing layers, are inherently characterized by the formation, evolution, and interaction of
vortices. These vortices, defined by regions of concentrated vorticity ωωω = ∇×u (where u is the
velocity vector), often exhibit significantly reduced pressures within their cores due to the cen-
tripetal acceleration required to maintain the swirling motion. For an idealized Rankine vortex,
the pressure in the core can be substantially lower than the ambient pressure, providing a natural
locus for cavitation inception (Saffman, 1992). The work of Harvey et al. (1947) highlighted the
importance of pre-existing gas nuclei stabilized in crevices for heterogeneous nucleation. Subse-
quent experimental investigations by numerous researchers further elucidated the link between flow
separation, vortex formation, and cavitation inception on various body shapes, see Morch (2000).

A particularly complex and challenging scenario arises from the three-dimensional interaction
of multiple vortical structures. As highlighted by extensive literature, in flows such as those around
marine propellers and control surfaces, cavitation inception is frequently observed not within the
primary, often spanwise-oriented, shedding vortices, but rather within weaker, typically stream-
wise or obliquely oriented, secondary vortical structures. The prevailing hypothesis, substantiated
by both experimental observations and numerical simulations, posits that the intense strain field
imposed by stronger, primary vortices can induce significant stretching of these weaker, secondary
vortices (Knister, 2024; Leasca et al., 2025). This vortex stretching mechanism is a fundamental
aspect of three-dimensional turbulent flows, described by the vorticity transport equation:

Dωωω

Dt
= (ωωω ·∇)u−ωωω(∇·u)+ν∇2ωωω+ 1

ρ2∇ρ×∇p (7.2)

where D/Dt is the material derivative, ν is the kinematic viscosity, and the term (ωωω ·∇)u represents
the vortex stretching and tilting. For incompressible flow, ∇ · u = 0, and the baroclinic term
vanishes if density is constant. The stretching process, by conserving angular momentum within
the vortex core (or more formally, by Kelvin’s circulation theorem under ideal conditions), leads
to an amplification of vorticity and a concurrent reduction in core size, resulting in a dramatic
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decrease in core pressure, often sufficient to trigger cavitation even when the ambient cavitation
number is relatively high (Tennekes and Lumley, 1972). Furthermore, the inherent instabilities
present in turbulent shear flows can exacerbate these vortex interactions and transient pressure
minima. Long-wavelength instabilities, such as the Crow instability observed in systems of counter-
rotating vortices (Crow, 1970), can lead to significant mutual distortion, stretching, and eventual
reconnection or merging of vortical structures. These dynamic events create localized, transient
regions of exceptionally low pressure within the cores of the interacting, often weaker, vortices,
making them prime candidates for cavitation inception. Observations by Chang et al. (2012) and
recent advanced experimental investigations, such as those by Knister et al. (2020); Knister (2024),
employing sophisticated techniques like stereoscopic Particle Image Velocimetry (PIV) coupled
with high-speed cavitation visualization, have begun to unravel the intricate three-dimensional
kinematics and dynamics of these interacting vortex systems and their direct correlation with
incipient cavitation events.

Despite these advances, predictive modeling of cavitation inception, particularly in complex
three-dimensional and turbulent flow fields, remains a formidable challenge. Cavitation inception
is inherently a multi-scale process, driven by transient, extreme pressure minima that occur within
the smallest turbulent eddies. These critical pressure fluctuations are often orders of magnitude
smaller in spatial and temporal scales than the overarching flow features. Accurately capturing these
fleeting, localized events poses a significant challenge for numerical simulations, as demonstrated by
Madabhushi and Mahesh (2025), which highlights that reliable prediction of cavitation inception
in complex flow configurations, such as twin vortex interactions undergoing Crow instability, fun-
damentally necessitates simulations with very fine spatial and temporal resolution. The stochastic
and intermittent nature of these extreme low-pressure events further compounds the difficulty in
their precise numerical detection and traditional computational fluid dynamics (CFD) methodolo-
gies face inherent limitations in addressing this multi-scale nature. Direct Numerical Simulation
(DNS), while capable of resolving all relevant turbulent scales and the associated pressure fluc-
tuations, remains computationally prohibitive for the high Reynolds number flows characteristic
of practical engineering applications. Consequently, DNS is typically restricted to lower Reynolds
numbers or canonical flow problems. Reynolds-Averaged Navier-Stokes (RANS) models, widely em-
ployed for their computational efficiency, fundamentally rely on time-averaging the flow equations.
This averaging process inherently smooths out the transient, small-scale pressure fluctuations that
are the primary triggers for cavitation inception, leading to substantial inaccuracies in predicting
the onset conditions and locations of cavitation.

LES offers a more sophisticated alternative by explicitly resolving the large, energy-containing
turbulent eddies while modeling only the smaller, SGS motions (Pope, 2001). While LES has
been increasingly applied to cavitating flows, demonstrating its potential to capture the unsteady
dynamics of sheet, cloud, and vortex cavitation (Gnanaskandan and Mahesh, 2015), accurate pre-
diction of inception remains a challenge (Bappy, 2022; Madabhushi and Mahesh, 2025). The most
critical extreme pressure minima frequently manifest at the unresolved subgrid scales, which are
effectively ignored or inadequately represented by standard LES closures. This deficiency creates
a ”missing physics” problem, where the very phenomena responsible for initiating cavitation are
filtered out or averaged. The filtered pressure field obtained from LES, p̄, may not accurately rep-
resent the instantaneous local pressure, p, experienced by a cavitation nucleus. This necessitates
the development and implementation of a dynamic LES framework that aims to account for the
influence of unresolved pressure fluctuations, p′

sgs = p− p̄, and their impact on the activation of the
cavitation nuclei for cavitation.
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Overview of the proposed LES framework

To overcome the computational and physical modeling challenges, as mentioned above, this paper
introduces a novel LES framework specifically tailored for accurate and computationally feasible
prediction of cavitation inception. This framework integrates three advanced modeling components,
each addressing a critical aspect of the multiscale and multiphysics nature of cavitation:

1. Dynamic SGS Turbulent Kinetic Energy Model (Chai and Mahesh, 2012): Building upon the
foundational concepts of SGS modeling, this dynamic one-equation model solves a transport
equation for the SGS turbulent kinetic energy, ksgs. This provides a dynamic and physically
consistent measure of unresolved turbulence and its fluctuations, which are essential inputs
for the SGS cavitation model. This approach extends previous efforts by allowing for a more
physically realistic representation of the intensity of subgrid pressure fluctuations, which are
highly dependent on the local resolved flow dynamics.

2. SGS Cavitation Event Rate Model (Bappy et al., 2022): This model statistically accounts for
unresolved pressure fluctuations at the subgrid level, effectively bypassing the strict require-
ment for extremely high spatial and temporal resolution. It allows for accurate cavitation
inception predictions on coarser computational grids by relating the probability of an incep-
tion event to the local subgrid flow conditions.

3. Dynamic Nuclei Transport Model (Brandao and Mahesh, 2022): Another novel aspect of the
current research is the utilization of a vapor transport model, which enables the dynamic com-
putation of void fraction and the rigorous handling of polydisperse nuclei size distributions.
This component is vital for accurately representing the sensitive dependence of cavitation
inception on water quality and local nuclei concentration in highly turbulent flows, as nuclei
can be convected, trapped in vortical structures, or generated by previous cavitation events.

This integrated framework holistically addresses the multi-physics and multi-scale nature of
cavitation inception. Each component fills a critical gap in traditional LES, allowing for a more
comprehensive and physically consistent prediction of inception in complex turbulent flows without
incurring the prohibitive computational costs associated with DNS. The synergy between these
models is central to achieving both accuracy and computational efficiency. The dynamic SGS
turbulent kinetic energy provides the local turbulent environment, which then informs the statistical
cavitation model, while the dynamic nuclei transport ensures the correct ”seed” population for
cavitation. This multi-faceted approach is designed to provide more accurate estimations of the
cavitation inception pressure, potentially identifying inception events within secondary or highly
strained vortex cores even when the resolved local mean pressure is considerably above the vapor
pressure.

By addressing these challenges, this work seeks to advance the modeling of vortex-induced
cavitation inception. The insights gained are anticipated to be vital for improving the design
methodologies and operational envelopes of naval systems, such as propellers and rudders, where
cavitation remains a persistent and critical challenge. Moreover, advances in the modeling approach,
particularly those concerning the interplay between resolved turbulent structures, SGS flow, and
Lagrangian bubble dynamics , are expected to offer strategic benefits for predictive modeling and
risk mitigation of cavitation across a broader spectrum of engineering applications. The remainder
of this paper is organized as follows. Section 7.2 details the governing equations, the LES method-
ology, the specifics of the SGS cavitation inception model including the dynamic ksgs and nuclei
transport components, and the numerical setup for the investigated flow configurations. Section
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7.3 presents the results of our simulations, focusing on the vortex dynamics, pressure field charac-
teristics, and predicted cavitation inception behavior under various conditions, including analyses
of grid and nuclei sensitivity.

7.2 Methodology
The numerical simulations in this study are performed using a LES framework. The LES approach
directly resolves the large, energy-containing turbulent motions while modeling the influence of the
smaller, unresolved subgrid scales. This section details the governing equations, the SGS closure
for the momentum equations, the statistical model employed for predicting cavitation inception,
and the dynamic model for nuclei concentration.

Governing equations for LES

The simulations are performed using an unstructured overset grid method (Horne and Mahesh,
2021), which allows for increased flexibility by enabling meshes to overlap and move relative to
each other. This approach provides fine resolution in key areas near the propeller blades while
coarsening away from the body, which significantly reduces the total cell count and computational
cost. The incompressible Navier-Stokes equations are solved in an Arbitrary Lagrangian-Eulerian
(ALE) formulation, where the grid velocity is included in the convection term to avoid tracking
multiple reference frames. The governing equations for the resolved-scale fluid motion are given by
the filtered continuity equation:

∂ūi

∂xi
= 0 (7.3)

and the filtered momentum equation:

∂ūi

∂t
+ ∂(ūiūj)

∂xj
=−1

ρ

∂p̄

∂xi
+ν

∂2ūi

∂xj∂xj
− ∂τij

∂xj
(7.4)

Here, xi represents the Cartesian coordinates (i = 1,2,3), t is time, ui is the i-th component of
the filtered velocity vector, ρ is the constant fluid density, p is the filtered pressure, and ν is the
kinematic viscosity of the fluid. The overbar (·) denotes the spatial filtering operation, typically a
convolution with a filter kernel of characteristic width ∆. The term τij in Equation (7.4) is the SGS
stress tensor, which arises from the filtering operation and represents the effect of the unresolved
small-scale motions on the resolved large scales. This tensor is unclosed and requires modeling, it
is defined as:

τij = uiuj− ūiūj (7.5)

Equation (7.4) is solved using a finite volume segregated predictor-corrector scheme. The veloc-
ities are first predicted by solving the momentum equation and then corrected using the pressure
Poisson equation to satisfy the continuity equation. The implicit Crank-Nicolson scheme is used for
the temporal advancement of the solution. The interpolation between centroid and face velocities
is performed in a manner that emphasizes discrete kinetic energy conservation.

Dynamic k-equation SGS model

To close Equation (7.4), the SGS stress tensor τij modeled using an eddy viscosity approach. The
deviatoric part of the SGS stress tensor, τd

ij = τij− 1
3τkkδij(where τkk is the trace of the SGS stress
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tensor, representing twice the SGS turbulent kinetic energy ksgs, and δij is the Kronecker delta), is
related to the resolved rate-of-strain tensor Sij :

τd
ij =−2νsgsS̄ij =−2νsgs

1
2

(
∂ūi

∂xj
+ ∂ūj

∂xi

) (7.6)

where νsgs is the SGS eddy viscosity.
In this work, νsgs is determined using a dynamic one-equation model based on the transport of

SGS turbulent kinetic energy, ksgs = 1
2τkk. We employ the model proposed by Chai and Mahesh

(2012), which has demonstrated improved predictions of high-wavenumber energy spectra and
kinetic energy evolution compared to algebraic SGS models, particularly in complex non-equilibrium
flows. The SGS stress tensor is defined by the following relation, where

√
k is chosen as the velocity

scale instead of ∆|S|:

τij−
2
3ρkδij =−2CS∆ρ

√
kS̄∗

ij . (7.7)

Here, CS is the model coefficient for SGS stress and S∗
ij is the traceless strain-rate tensor defined

as -

S̃∗
ij = S̃ij−

1
3δijS̃kk = 1

2

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
− 1

3
∂ūk

∂xk
δij . (7.8)

A key feature of the model used is the dynamic determination of model coefficients in the ksgs-
equation. This dynamic procedure adapts the model to the local state of the flow, alleviating the
need for ad-hoc tuning of constants. The approach typically involves the application of a second,
test filter (with width ∆̂ > ∆) to the resolved flow field, allowing for the evaluation of Germano-
type identities for ksgs or related quantities (Germano et al., 1991; Lilly, 1992). The Lagrangian
time scale is dynamically computed based on a surrogate-correlation of the Germano-identity error
(Verma et al., 2013). This methodology aims to provide a more robust estimation of the SGS
dissipation and viscosity.

SGS cavitation inception model

Cavitation inception for a nucleus of radius R0 occurs when instantaneous pressure (p) falls below
a critical value,

pcrit(R0) = pv−
2S
R0

+pg(R0), (7.9)

where pv is vapor pressure, S is the surface tension, and pg accounts for non-condensable gas in the
nucleus. LES resolves only the filtered (large-scale) pressure, p̄, and cavitation inception prediction
will not be accurate until p accounts for the unresolved SGS turbulence. Therefore, LES needs
to resolve the finest scales of the flow, comparable to the size of the nuclei population, to predict
proper instantaneous pressure for computing cavitation inception. In such cases, p′

sgs would be
negligible and can be ignored. However, in the absence of such highly-resolved LES, we need to
model the SGS pressure fluctuations and their effects on nuclei to properly capture the inception
of cavitation. Central to this approach is the modeling of SGS velocity fluctuation, u′

sgs, obtained
from the dynamic k-equation model:

u′
sgs =

√
2
3ksgs, (7.10)
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where ksgs evolves dynamically according to local production, transport, and dissipation of SGS
kinetic energy. This velocity fluctuation sets the scale for unresolved, rapid variations in the pressure
field.

To link SGS velocity to pressure, we can assume that the unresolved pressure fluctuation,
p′

sgs = p− p̄, follows a probability density function (PDF) shaped by local SGS energy:

f(p′
sgs) = 1√

2πσ2
p

exp
(
−

(p′
sgs)2

2σ2
p

)
, (7.11)

with variance σ2
p typically related to ksgs as σp = Cpρksgs, where Cp is a function of unresolved

turbulence level defined by Resgs. This probabilistic construction is necessary because p′
sgs is not

explicitly resolved. This framework currently utilizes the modeled effects of these fluctuations
statistically, drawing on local SGS turbulence quantities. The probability that a nucleus in a given
cell incepts is thus

Pinc(R0) =
ˆ pcrit(R0)−p̄

−∞
f(p′

sgs)dp′
sgs, (7.12)

which quantifies the likelihood that subgrid-scale pressure excursions will trigger cavitation. To
get a ’successful’ or ’detectable’ cavitation event rates (when nuclei radius reached a certain size
e.g. 250 µm or 10R0), a temporal scale of cavitation (the time it takes for the nucleus to reach
successfull cavitation) needs to be considered as well. Bappy et al. (2022) provided a database
of cavitation event frequency per unit time per unit volume, fcav, as function of Resgs, ϵsgs, R0,
and pabs. The absolute value of pressure (pabs) is calculated from the resolved LES at every grid
cell for some arbitrary reference pressures, pref , that represents the reference static pressure of the
experiment.

pabs = pref +ρU2
∞ ·p. (7.13)

The SGS variables are computed as

ϵsgs = (CS∆)2S3, (7.14)

Resgs = 2.58ksgs√
νϵsgs

, (7.15)

where, CS is the dynamically computed coefficient using Germano’s identity (Chai and Mahesh,
2012).

The total cavitation event rate is then obtained by integrating fcav for the nuclei size distribution
N(R0) over the region of interest for the total simulation time:

Fcav =
ˆ T

0

ˆ
V
fcav(ksgs, ϵsgs,N(R0),pabs)dV dt. (7.16)

The average cavitation event rate or frequency is simply -

F cav = Fcav
T

. (7.17)
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Dynamic nuclei concentration model
Accurate modeling of cavitation inception depends on a realistic and dynamically evolving descrip-
tion of both the concentration and size distribution of cavitation nuclei. In turbulent flows, the
number and size of nuclei are rarely spatially uniform or temporally constant, as they are influ-
enced by advection, turbulent diffusion, local recirculation, and pressure fluctuations (Katz, 1984).
To address these complexities, we employ a dynamic model that evolves nuclei concentration as a
function of the local flow environment.

The nuclei population is characterized by a size distribution N(R0, x⃗, t), where N(R0) denotes
the number density of nuclei (per unit volume per unit radius interval) at location x⃗ and time t.
The total local vapor volume fraction (α) occupied by nuclei is

α(x⃗, t) =
ˆ Rmax

Rmin

4
3πR

3
0N(R0, x⃗, t),dR0. (7.18)

The vapor concentration C is related to the local vapor volume fraction such that

C(x⃗, t) = α(x⃗, t) ·ρv. (7.19)

For practical implementation within LES, we solve a scalar transport equation for the vapor
concentration:

∂C

∂t
+∇· (ūC) =∇· (DC∇C)+Ssource

C −Ssink
C , (7.20)

where ū is the resolved flow velocity and DC is the nuclei diffusivity (which may depend on local
turbulence, e.g., through a turbulent Schmidt number Sct = νsgs/DC). Ssource

C and Ssink
C represent

nuclei production and loss mechanisms, including generation by surface entrainment or bubble
fragmentation, and removal by dissolution, coalescence, or trapping.

The dynamic vapor concentration field C(x⃗, t) then serves as a locally resolved input for the SGS
cavitation inception model, ensuring that predictions of cavitation onset account for the true, inho-
mogeneous distribution of potential nucleation sites in the flow. In a fully polydisperse framework,
Eq. (7.20) can be generalized and solved for each nuclei size class to track N(R0, x⃗, t), providing
maximum resolution for multi-scale or population balance applications. For the monodisperse-
approach presented here, C(R0)∝N(R0), and N(R0)t=tn = N(R0)t=0·C(R0)t=tn

C(R0)t=0
.

7.3 Numerical setup
This study investigates cavitation inception due to the interaction of vortices generated by a twin
hydrofoil flow configuration. It involves a pair of hydrofoils, fixed at certain AOAs, designed
to generate unequal strength vortex pairs that interact with each other downstream of the foils,
providing a canonical setup for studying vortex-induced cavitation inception mechanisms. This
configuration is designed to create a controlled environment in which a weaker stream-wise vortex
is subjected to the strain field of a stronger primary vortex, leading to stretching and intensification
of the weaker vortex core.

The hydrofoils employed are based on a modified NACA 66 section, similar to those used in
previous studies of vortex interactions and cavitation (Shen and Dimotakis, 1989). Both hydrofoils
share a root chord length c = 167mm. The primary (bottom) hydrofoil is a rectangular planform
with the modified NACA 66 profile, set at an AOA of 6◦ relative to the incoming flow. This foil is
designed to generate a relatively strong tip vortex. The secondary (top) hydrofoil, responsible for
generating the weaker vortex that is targeted for cavitation inception, features the same modified
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Figure 7.1: Numerical setup for the twin hydrofoil configuration. Top: Experimental image showing two initially
non-interacting vortices of different strength interacting downstream (From Knister (2024)). Bottom: Numerical
hydrofoils with counter-rotating vortices from one instantaneous flow solution of the medium grid.

NACA 66 profile but is tapered along its span and incorporates a semicircular tip. This geometry
promotes the formation of a more concentrated, tightly rolled-up tip vortex. This foil is mounted
upstream and above the primary foil and is set at different AOAs of 0◦,−2◦,−4◦ . The relative
positioning of the foils is critical to achieve the desired vortex interaction. Figure 7.1 illustrates the
numerical setup, detailing the hydrofoil geometries, their relative spacing, and orientation within
the computational domain.

The computational domain is a rectangular channel designed to simulate an effectively un-
bounded environment around the hydrofoils, similar to a large water tunnel test section. The
leading edge is at x= 0 and the trailing edge is at x= 1.0. The domain extends 3c upstream of the
leading edge of the primary hydrofoil, 7c downstream to allow full development and observation of
the interacting vortices, and 0.5c in both the vertical and spanwise directions from the center of
the hydrofoil system. A uniform velocity profile u = (U∞,0,0) with U∞ = 10m/s is specified at the
inlet while an outflow boundary condition with zero-gradient velocity and pressure applied at the
outlet. No-slip wall conditions are applied on the top, bottom, and side boundaries to represent
the experimental channel section. Finally, no-slip boundary conditions are applied on the surfaces
of both hydrofoils.

To assess the sensitivity of the simulation results to spatial resolution, particularly for predicting
pressure minima and the efficacy of the SGS cavitation model, two different grid resolutions were
used (see Table 7.1) which were compared to the experimental study of Knister (2024).

The meshes are hybrid with prismatic layers near the leading and trailing edges of the hydrofoil
surfaces. Boundary layers are resolved with y+ < 1 for the first cell height and hexahedral cells in
the far-field and vortex interaction regions. Significant mesh refinement is applied in the regions
where the tip vortices are expected to form and interact, based on preliminary simulations and
theoretical estimations of vortex trajectories.
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Grid Coarse Medium Fine

Number of cells (×106) 110 180 250

Cells in vortex core 6 12 25

Timestep (×10−4) 5 2 1

Number of Processors 1250 2070 3072

Table 7.1: Spatial & temporal resolution with computational resources used for simulation of each numerical grid.

Unless otherwise specified, all the quantities presented are nondimensionalized using the refer-
ence chord length c, the reference velocity U∞, and the reference density ρ. The reference quantities
for this configuration are the undisturbed upstream velocity U∞ = 10m/s, the chord length of the
primary hydrofoil c = 0.167m, and the density of freshwater ρ = 998kg/m3. This yields a chord-
based Reynolds number Rec = U∞c/ν ≈ 1.67×106.

7.4 Results
This section presents the key findings from the large-eddy simulations (LES) and the application
of the SGS cavitation inception model. The results focus on the complex flow structures generated
by the interacting hydrofoil wakes, the resulting pressure fluctuations, the characteristics of both
resolved and unresolved turbulence, the role of cavitation nuclei, and the predicted cavitation event
rates. Comparisons are made to available experimental data where possible, and the sensitivity of
the predictions to numerical parameters like grid resolution is investigated.

Flow field
The flow field downstream of the hydrofoils is characterized by the generation and evolution of
complex vortex structures originating from the leading edges. As illustrated by isosurfaces of
pressure in Fig. 7.1 (e.g., blue isosurfaces at p/ρU∞

2 = −0.12), two distinct vortices of differing
strengths are observed shed from each hydrofoil. One vortex is typically weaker and rotates counter-
clockwise (CCW), while the other is stronger and rotates clockwise (CW). These vortices propagate
downstream, drawing closer to each other. The weaker, secondary vortex is observed to wrap around
the stronger, primary vortex, initiating a complex interaction process. Further downstream, this
interaction leads to the onset of the Crow instability, resulting in the formation of an intricate array
of spanwise and streamwise vortex structures, as shown in Fig. 1. This process is consistent with
observations of interacting vortex pairs in other studies, such as those detailed by (Leweke et al.,
2016). There are three distinct regions: undisturbed vortex pair, undulating secondary vortex with
undisturbed primary vortex, and mutually interacting vortices.

During their interaction and subsequent evolution, the primary and secondary vortices, along
with the smaller breakup vortices resulting from the instability, are subjected to significant shear
and turbulent fluctuations indicated by high levels of turbulent kinetic energy (TKE). Prior to
the strong interaction, the minimum pressure is typically located within the core of the stronger
primary vortex, aligning with expectations for isolated or weakly interacting vortices where the
pressure minimum scales with the square of the tangential velocity and vortex core radius. However,
following the merging and interaction phase, the dynamics become more complex. The secondary
vortex undergoes significant vortex stretching, a process known to reduce the vortex core size. This
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Figure 7.2: (a) Contour plot of a instantaneous solution for streamwise velocity u illustrating the overall flow pattern
across stations at different downstream locations in the wake of the hydrofoils. (b) Isosurfaces of instantaneous
vorticity ω at the same instant visualizing the instantaneous three-dimensional vortical structures in the flow.

reduction in core size leads to an intensification of tangential velocities and a further decrease in
pressure within the core. Additionally, the development of axial flow or ’jetting’ within the vortex
cores can also contribute to a reduction in central pressure. The combination of these dynamic
effects, particularly the intense stretching experienced by the secondary vortex, results in notable
pressure drops predominantly affecting its core. This explains why the secondary vortex core is
often observed to be the preferential site for cavitation inception, even under conditions where
the ambient fluid pressure is relatively high (Knister, 2024), as shown in Fig. 2 which presents
instantaneous streamwise velocity and pressure contours at various downstream stations. The
velocity fluctuations are negligible far from the vortex cores, moderate within the cores, but have
higher values around the vortex peripheries. Further analysis of instantaneous pressure contours
(Figure 7.3) confirms these localized low-pressure regions within the evolving vortex structures.

Location of Instability b rp rs

Experiment 2.1-2.5 0.083 0.0335 0.021
Coarse 2.0-2.6 0.08 0.037 0.026

Medium 2.1-2.6 0.085 0.035 0.025
Fine 2.15-2.65 0.088 0.034 0.025

Madabhushi and Mahesh (2025)∗ 2.1-2.6 0.09 0.033 0.024

Table 7.2: Comparison of instability location, and values of distance between vortices (b), radii of primary and
secondary vortices at x = 1.68. All quanties are measured similar to Knister (2024). Madabhushi and Mahesh (2025)
simulation was performed at an AOA of −1.5◦.

Resolved pressure field and fluctuations

The nondimensional pressure field resolved in the LES is presented in Fig. 7.3. The measurement
region spans from 0.0 to 2.0c (measured from trailing edge) in the streamwise direction, 0.6c to 1.2c
in the wall-normal direction, and −0.3c to 0.3c in the spanwise direction. Fig. 7.3(b) has the iso-
surface of p=−0.12 showing the relative size of the vortices as the move downstream and interact.
From station-wise instantaneous pressure contours in Fig. 7.3(a), we can see that the pressure is
initially very low within the cores of the vortices; but in the downstream region, these low pressures
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within the cores (more for the secondary vortex) do not sustain as the vortices gradually lose their
strength. Therefore, cavitation is less probable beyond 0.5c downstream of the trailing edge of
the foils. However, due to the instabilities through vortex-vortex interaction, the secondary vortex
experiences stretching and the local pressure within the secondary vortex drops significantly to
initiate cavitation there. The instantaneous pressure is utilized for the prediction of cavitation
inception.

For the medium and coarse grids, the minimum pressure histories are presented in Fig. 7.3(c)
and their PDFs are in Fig. 7.3(d). Over the entire simulation duration, the minimum instantaneous
pressure recorded within this region is approximately −1.05×ρU2

∞ for the medium grid at AOA=
−4◦.

The time history of the average pressure within this box exhibits a mean value of approximately
−0.1× ρU2. The fluctuations around this mean are observed to be within approximately 5% of
ρU2

∞. Focusing on the resolved minimum pressure history, the mean value is substantially lower,
around −0.35× ρU2

∞. The time history of the minimum pressure reveals numerous events where
the pressure drops below −0.6× ρU2

∞. Assuming that the resolved lowest pressure persists for
a sufficient duration to allow for the growth of a cavitation nucleus into a detectable event, the
cavitation inception pressure (pinc) can be estimated directly from the minimum resolved pressure
(pmin) using the relationship pinc = −pmin× ρU2 + pvap, where pvap is the vapor pressure of the
fluid. Using this criterion, the predicted cavitation inception pressure is 103.91 kPa, resulting in a
cavitation inception number σi = 1.05. The inception number is defined as σi = pinc−pvap

1
2 ρU2

∞
, where pref

is the reference pressure, taken upstream of the foils to obtain undisturbed freestream pressure.

Resolved turbulence

Accurate representation of turbulence is paramount in predicting cavitation inception, as turbulent
fluctuations contribute significantly to local pressure variations. In LES, turbulence is partitioned
into resolved and SGS components. The resolved turbulence, which comprises the large, energy-
containing eddies, is directly computed by the simulation. The spatial distribution and intensity of
resolved turbulence provide insights into the flow regions most susceptible to low-pressure events.

As shown in Fig. 7.4, contours of resolved TKE reveal regions of high velocity fluctuations
downstream of the hydrofoils. These high-TKE regions are primarily concentrated within and
around the interacting vortex structures and in the wake shear layers. The elevated resolved TKE
indicates significant resolved velocity fluctuations, which are directly linked to resolved pressure
fluctuations through the incompressible Navier-Stokes equations. Regions of high resolved TKE
are therefore potential sites for instantaneous low pressure events, especially when coupled with
the deterministic pressure drop due to vortex dynamics. The spatial extent and magnitude of the
resolved turbulence observed here are qualitatively consistent with experimental measurements of
streamwise-vorticity (Table 7.2).

Unresolved turbulence

A critical component for accurately modeling cavitation inception in LES, particularly for grids
that do not fully resolve the Kolmogorov scale, is the estimation of unresolved or SGS turbulence.
While the resolved field captures the large-scale pressure fluctuations, the small-scale turbulent
eddies, though unresolved, can induce significant localized pressure drops that trigger cavitation
inception. The SGS inception model specifically accounts for the influence of these unresolved
scales on cavitation nuclei through modeling their cavitation event rates.
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(a) (b)

(c)

(d)

Figure 7.3: (a) Contour plot of the time-averaged pressure coefficient Cp = (p − pref)/(0.5ρU2
∞), showing the spatial

distribution of the mean pressure field downstream of the hydrofoils relative to the reference pressure pref . (b)
Isosurfaces of pressure (p) at -0.12 (Blue) and -0.25 (green) showing the low pressure within the vortices. (c)
Minimum pressure histories for coarse and medium grids at −4◦ and 0◦ AOAs, the symbols represent the minimum
pressure within the specified time. (d) and pdfs of resolved pressure within the defined region.
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Figure 7.4: Contour plot of the time-averaged resolved turbulent kinetic energy kres, showing the spatial distribution
of kinetic energy contained in the resolved turbulent scales.

(a) (b)

Figure 7.5: SGS (a) velocity fluctuation scale u′
sgs and (b) Taylor-scale Reynolds number Resgs at a representative

time, indicating the spatial distribution of the velocity scale of the unresolved turbulence as estimated by the SGS
model.

The model framework relies on estimating key SGS turbulence parameters based on the resolved
flow field and the local grid characteristics. These parameters include the SGS dissipation rate
(εsgs), the SGS velocity fluctuations (u′

sgs), and the SGS Taylor-scale Reynolds number (Resgs).
These quantities are then used to statistically determine the pressure fluctuations experienced by
a spherical nucleus of initial radius R0 at a local mean pressure P0. Higher strain rates and larger
grid sizes lead to increased SGS turbulence estimation. Such estimated SGS turbulence, in turn,
predicts higher SGS pressure fluctuations that augment the resolved low pressures. Figure 7.5
illustrates contours of instantaneous u′

sgs and Resgs highlighting regions where the SGS model is
most active. The contour plot of Resgs indicates the level of SGS turbulence downstream of the
hydrofoils. Generally, these values are relatively low, suggesting that the grid is well resolved and
the contribution of SGS pressure fluctuations to the total pressure experienced by a nucleus should
be modest compared to cases with coarser grids. Outside the vortex cores, Resgs is very low (< 10),
but within cores and around the core boundaries, Resgs can reach values greater than 250. This
spatial variation underscores the importance of considering local turbulence levels when assessing
cavitation potential. The magnitude of the SGS velocity fluctuations (u′

sgs) ranges from 0 to 18% of
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the freestream velocity (U∞) for −4◦ AOA case, with an average value of about 5% in the vicinity
of the vortices. From the perspective of the SGS inception model, these values, particularly in
the localized high-activity regions, are substantial enough to introduce a notable correction to the
inception pressure predicted solely by the resolved field. Based on the model’s formulation and the
typical nuclei size distribution, these SGS fluctuations can contribute an additional pressure drop
of 10-40 kPa for inception, depending on the specific nucleus size (R0) and local absolute pressure
(pabs). This demonstrates the importance of the SGS model in capturing the cumulative effect
of unresolved turbulence on cavitation susceptibility. Further analysis could involve examining
the correlation between high Resgs regions and the spatial location of resolved low-pressure events
to better understand the interplay between resolved and unresolved scales in driving cavitation
inception.

Nuclei distribution and transport

Cavitation inception is fundamentally dependent on the presence of cavitation nuclei, which are
small bubbles or cavities within the liquid that serve as preferential sites for vapor bubble growth.
The spatial distribution and transport of these nuclei within the flow domain significantly influence
where and when inception occurs. In complex turbulent flows, nuclei are not passively advected
but can be influenced by pressure gradients, turbulent diffusion, and potentially even centripetal
forces within vortex cores.

To assess the impact of nucleus distribution, two distinct approaches were investigated: one
assuming a constant, uniform nuclei concentration throughout the flow domain (CN(R0)), and
another employing a dynamic nuclei concentration model DN(R0). For both methods, the initial
nuclei size distribution is estimated using the suggested nuclei size distribution by (Li and Carrica,
2021) with a nuclei density of 1×107 nuclei/m3. The dynamic model accounts for their advection
by the resolved flow, turbulent diffusion based on SGS quantities and dispersion.

Modeled SGS cavitation events

Leveraging the information from the resolved flow, the estimated unresolved turbulence, and the
nucleus distribution, the SGS inception model predicts the volumetric rate of cavitation events
(fcav) within the flow. This model processes a set of local independent variables, including the SGS
Taylor-scale Reynolds number (Resgs), the SGS dissipation rate (εsgs), the local mean pressure
(P0), and the initial nucleus radius (R0), to determine the probability of a nucleus experiencing a
sufficient pressure drop and duration to trigger cavitation.

Fig. 7.6 presents instantaneous cavitation event rates at five different downstream stations,
assuming a dynamic nuclei density. These plots reveal that the model predicts higher event rates
predominantly in the far downstream region, where the vortex structures are undergoing intense
interaction and breakup. Interestingly, the model does not predict high event rates in the near
downstream of the hydrofoils, despite the presence of relatively low resolved pressures there. This
suggests that the combination of pressure magnitude, resolved and unresolved turbulence, and
potentially the residence time of nuclei in low-pressure regions are all critical factors for inception,
and the model well captures this interplay. Furthermore, the contours clearly indicate that the
higher event rates are concentrated within the cores of the secondary vortices, which aligns well
with experimental observations of cavitation initiation locations. This spatial agreement provides
strong support for the SGS inception model’s ability to correctly utilize the information about
unresolved scales and local conditions to identify cavitation hotspots.
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Figure 7.6: Contour plot of the instantaneous cavitation event frequency fcav, showing the locations with high
probability of having cavitation inception.

Figure 7.7: Average cavitaion event frequency for Medium & Coarse grids with and without the dynamic nuclei size
distribution. MM2025: Madabhushi and Mahesh (2025).
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The instantaneous cavitation event rates can be averaged spatially and temporally at different
reference pressures to generate a cavitation event rate curve, as shown in Figure 7.7 . These curves,
typically plotting fcav against the reference pressure, provide a means to compare the simulation
results with experimental data, which often report cavitation event frequency as a function of test
section pressure. The curves presented in Figure 7.7 indicate that small cavitation activities are
predicted even at relatively high reference pressures, such as 150 kPa. This is particularly notable
considering that the local resolved minimum pressure in the simulation might only reach around
103 kPa. The ability of the SGS model to predict inception at higher reference pressures is a
direct consequence of accounting for the additional pressure fluctuations induced by the unresolved
turbulence, which can momentarily drive the total pressure experienced by a nucleus below the
vapor pressure even when the resolved pressure is higher. The time-averaged fcav contours also
suggest strong cavitation activity localized between 1.2c and 1.8c downstream of the hydrofoils
(where c is the hydrofoil chord length), which is consistent with experimental observations of the
primary cavitation zone. Therefore, both the predicted inception pressure (as indicated by the
onset of significant event rates on the curves) and the spatial location of inception show reasonable
agreement with experimental data (see Tables 7.3 and 7.4).

Effect of grid resolution

The spatial resolution of the LES grid exerts a profound influence on the ability to capture the
fine-scale, intermittent turbulent motions that govern the local pressure minima responsible for
cavitation inception. In LES, grid spacing sets a lower bound for the smallest scales of motion
that are explicitly resolved, meaning smaller, faster pressure fluctuations—those most likely to
transiently drive local pressures below the vapor threshold—are filtered out in coarser simulations.
This results in a fundamental trade-off: while finer grids increase fidelity by resolving a greater
portion of the turbulence spectrum, they also elevate computational cost to levels that are often
prohibitive for practical engineering applications.

Our results, supported by the findings of Madabhushi and Mahesh (2025), highlight the limi-
tations of using only the minimum resolved pressure (pmin) as a criterion for inception. On coarse
grids (e.g., −4◦ AOA), predicted inception pressures based on resolved pmin are as low as 97.29 kPa,
dramatically below the experimentally observed range. Even with our finest grid, the minimum
resolved pressure rises only to 115.39 kPa — still notably under the experimental inception thresh-
old of approximately 135–155 kPa (for high DO conditions). In contrast, Madabhushi and Mahesh
(2025), using an exceptionally fine LES grid (and at −1.5◦ AOA), report an inception pressure near
152.83 kPa, which closely matches experimental results. This demonstrates that reliably capturing
the most extreme, short-lived low-pressure events using minimum-pressure criteria alone effectively
requires grids that may be computationally infeasible option for complex flows.

This strong dependence on grid resolution arises because coarse meshes inherently average out,
or suppress, the fine-scale turbulence that feeds the statistical tails of the pressure distribution.
In turbulent flows, inception-relevant pressure dips—often associated with intensifying, stretched
vortex cores or sharp local straining—can be highly localized both in space and time. If these spots
occur below the filtering scale, the resolved LES solution simply cannot predict their occurrence,
thereby underestimating cavitation risk.

To overcome this intrinsic limitation, our framework integrates a subgrid-scale (SGS) inception
model that statistically reconstructs the effect of unresolved turbulence on the pressure field. By
leveraging local SGS kinetic energy and dissipation, the model predicts the frequency and probabil-
ity of pressure excursions beyond what the resolved field can provide. Even on coarse and medium
grids, this statistical SGS approach yields a marked correction: with a constant nuclei distribu-
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tion (CN(R0)), inception thresholds increase to 123.07 kPa (coarse) and 134.33 kPa (medium),
capturing a major portion of the gap between resolved LES predictions and experiment.

The predictive fidelity is further enhanced by adding a dynamic nuclei transport model (DN(R0)),
which accounts for spatial nuclei clustering in low-pressure or high-shear flow regions—especially
within vortex cores, where inception is most likely. Results are also interpreted using two incep-
tion detection thresholds: fdet = 0.1 kHz (visual: sensitive only to frequent, macroscopic events)
and fdet = 0.001 kHz (acoustic: sensitive to rare, isolated events). This distinction is critical for
interpreting both simulation and experiment, as cavitation events detected acoustically may occur
at much lower frequencies and higher thresholds than those observable by eye or camera.

With this integrated modeling approach, the predicted inception pressures, with fdet of 0.1 &
0.001 Hz, increases to 141.24 kPa & 146.4 kPa, respectively, on the coarse grid. On the medium
grid, it increases to 138.39 kPa & 144.15 kPa. Fine grid results show further convergence with the
experimental window, reaching 142.87 kPa & 149.21 kPa. For comparison, Madabhushi and Mahesh
(2025)’s DNS-like result of 152.83 kPa (for −1.5◦ AOA) confirms the physical upper bound for
inception pressure at nearly full resolution. All model predictions for acoustic detection (fdet = 0.001
Hz) cluster tightly around or within the experimentally measured inception range of 135–155 kPa.

Table 7.3 compiles these results and affirms the critical advantages of the dynamic SGS and
nuclei transport models: they bridge the gap between computationally practical LES and the
physics of intermittent, high-risk cavitation inception. By explicitly reconstructing the effect of
subgrid-scale turbulence and locally evolving nuclei populations, this approach provides accurate
inception risk prediction at grid resolutions far coarser than DNS, making it a robust, reliable, and
computationally tractable tool for engineering simulation.

Resolved LES CN(R0) DN(R0) DN(R0)

0.1Hz 0.001Hz

Coarse 97.29 123.07 141.24 146.4
Medium 103.91 134.33 138.39 144.15

Fine 115.39 135.58 142.87 149.21
Madabhushi and Mahesh (2025)∗ 152.83 - - -

Table 7.3: Inception pressure as predicted by LES and the inception model (with and without dynamic nuclei
distributions) at different grid resolutions for −4◦ AOA. Values are in kPa.∗ Madabhushi and Mahesh (2025) had a
different AOA of −1.5◦.

Effect of angle of attack

AOA is a primary determinant of lift and drag on a hydrofoil, and it directly influences the char-
acteristics of the vortices shed from its tips. For a single hydrofoil, increasing the AOA generally
increases the lift, which, by the Kutta-Joukowski theorem, is directly related to the circulation
(Γ) of the shed vortex. A higher AOA leads to stronger vortices with greater circulation. This
increased circulation results in a larger pressure drop within the vortex core, as described by the
relationship between circulation and pressure in an idealized vortex model. Consequently, a higher
AOA makes a single vortex more susceptible to cavitation inception.

In a twin hydrofoil configuration, the interaction between the two vortices is a complex, three-
dimensional process that is highly dependent on their initial strength, size, and relative positions.
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Figure 7.8: Average cavitaion event frequency for different AOA with the dynamic nuclei size distribution.

As the angle of attack becomes more negative, the flow faces increased resistance, resulting in higher
shear to initiate the vortices. this also leads to a larger initial separation between the two vortices.
While this greater distance may initially seem to imply a weaker interaction, it also provides a
longer streamwise distance for the Crow instability to develop. This extended evolution allows for
a more prolonged and intense process of vortex stretching and tilting, which significantly amplifies
the vorticity and causes a dramatic reduction in core pressure.

The effect of AOA was assessed only using the Coarse grid. Table 7.4 outlines how cavitation
inception pressure changes with the AOA. With resolved pressure from LES, AOA of 0◦ gives the
maximum inception pressure while AOA of −4◦ gives the minimum inception pressure. This trend
is in strong agreement with experimental observations, which indicate higher inception pressures
under conditions that lead to more vigorous vortex interactions. SGS inception model with dynamic
nuclei distributions accurately captures this underlying physics. It predicts a continuous increase in
inception pressure as the AOA becomes more negative. For the fdet = 0.001 Hz criterion, it corrects
for about ∼ 50 kPa in the SGS, from an inception pressure with resolved LES of 97.29 kPa to 146.4
kPa at −4◦ AOA. Similar trend is observed for the −2◦ and 0◦ AOA with the model predicted
inception pressure of 148.71 and 150.95 kPa, respectively. The significant correction provided by the
SGS model shows its value in providing accurate, physically-grounded predictions on coarser grids.
By correctly identifying that a more negative AOA leads to more intense downstream interactions
and a greater propensity for inception, the model provides valuable insights that are not accessible
through traditional methods.

7.5 Discussion
Predicting cavitation inception in complex turbulent flows has long challenged fluid mechanics due
to the intricate and multiscale interplay among coherent vortical structures, unresolved small-scale
turbulence, and the evolving distribution of vapor nuclei. Traditional modeling approaches, includ-
ing Reynolds-averaged and even LES, often struggle because they do not capture the intermittent
extreme pressure fluctuations responsible for vapor nucleation or neglect the effects of local nuclei
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AOA Resolved LES DN(R0) : 0.001Hz Experimental (1 Hz - 0.1 Hz)

0◦ 105.13 150.95 140−160
−2◦ 99.53 148.71 110−145
−4◦ 97.29 146.4 95−135

Table 7.4: Inception pressure as predicted by LES and the inception model (with dynamic nuclei distributions) at
different AOAs for the coarse grid. Values are in kPa.

transport and accumulation. Recognizing these limitations, we have developed a unified LES frame-
work that integrates a dynamic k-equation SGS turbulence closure, a statistical cavitation inception
model based on probability of pressure fluctuations, and a dynamic nuclei transport equation. This
novel combination addresses all key physics underlying inception: it captures both the intensity
and the statistical frequency of extreme pressure excursions at subgrid scales, while simultaneously
tracking the spatially and temporally varying concentration of nuclei that act as cavitation seeds.

The effectiveness of this dynamic LES framework is demonstrated in the canonical twin hydrofoil
problem - a configuration in which two vortices of differing strengths, generated by staggered
foils, interact and stretch downstream in a way representative of many engineering flows prone to
cavitation. The model resolves large-scale coherent vortex structures and their interactions, and
reconstructs the crucial, unresolved turbulence-driven pressure reductions using SGS statistics. By
directly simulating the advection and turbulent dispersion of nuclei, the framework identifies where
they cluster within low-pressure vortex cores, which are revealed as focal points for cavitation onset.
This approach avoids the limitations associated with uniform nuclei assumptions or minimum-
pressure criteria, which often poorly estimate inception thresholds and fail to localize likely event
sites.

Validation against experimental data illustrates the dynamic and robust capability of the frame-
work. Across a range of practical grid resolutions, the unified LES-SGS approach consistently
reproduces observed inception pressures and event locations, bridging the gap between compu-
tational feasibility and physical fidelity. Even when using coarser grids that underestimate the
true range of pressure fluctuations, the SGS model reconstructs the frequency and spatial loca-
tion of cavitation inception with notable accuracy. The inclusion of a dynamic nuclei transport
model adds further realism, capturing the way nuclei accumulate in stretched vortex regions under
both turbulent diffusion and local pressure gradients. This integrated modeling strategy not only
achieves good agreement with experiments, but also exposes the underlying flow physics: stretches
and interactions of primary and secondary vortices, enhanced by the Crow instability, generate the
transient and acute pressure minima that govern when and where cavitation emerges. The frame-
work’s consistent prediction of inception across different AOA proves its robustness. In summary,
by explicitly capturing both resolved and subgrid turbulence, dynamically evolving nuclei fields,
and their statistical coupling, the proposed LES framework shows promise in providing accurate,
efficient, and physically consistent predictions for complex engineering-relevant flows.
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Understanding the Drag Production Mechanisms
of Soft Biofilms using Live Species and Synthetic
Replicates

Rodrigo Vilumbrales-Garcia & Harish Ganesh

Predicting drag penalties due to soft fouling on vehicles of naval interest remains a significant
challenge. Several factors, such as types and distributions (coverage) of species, the growth
duration, the nature of the resulting fouling morphology (presence of streamers, compliance,
etc.), and sloughing with time, need to be considered to develop models. However, these
factors make fundamental studies challenging in a controlled laboratory setting. Our effort
encompasses laboratory studies of drag production mechanisms and growth of both live
fouling at NRL-Key West and synthetic surfaces developed at the University of Michigan
in collaboration with Prof. Jon Estrada. Specifically, the relationship between artificial
surface properties and coverage is studied to understand the effect of non-uniform growth.
Measurements using live fouling are used to understand the relationship between coverage,
species concentration, and drag. The results of both aspects of the study will be combined
to improve our understanding of the drag produced by the soft films.

Keywords: biofouling, skin-friction drag, fouling growth

8.1 Introduction and motivation

The soft and hard biofilms that form in marine vessels and vehicles produce undesirable effects such
as increased skin friction drag, and degradation of material and performance, as seen in previous
studies (Schultz and Swain, 2000; Andrewartha et al., 2010; Schultz et al., 2015; Hartenberger et al.,
2020). Conducting experiments to analyze the drag production of surfaces covered with biofouling
presents many challenges. The time-varying nature of the problem, which involves the growth of
live specimens, implies a high degree of uncertainty, making repeatable experiments difficult.

A previous study by Hartenberger et al. (2020) discusses the challenges associated with studying
drag produced by soft fouling in a laboratory setting, such as nonuniform growth and sloughing.
For example, figure 8.1 shows various stages of drag measurements involving a flat plate covered
with algae (Hartenberger et al., 2020). Several plates were grown for various durations of time,
and images were acquired before and after the experiments were conducted. The after cases show
a noticeable amount of sloughing, caused by detachment of the biofilm due to the shearing of
the flow. Although this is an expected phenomena, it limits any forces or drag measurements
to one trial since sloughing results in a different roughness configuration. This results in greatly
limiting the repeatability of the study and hence preventing a general understanding of the causes
behind drag production. Similarly, experiments conducted at NRL-Key West (Chapter 9) reveal
a large spread in drag production of live biofilms grown under similar conditions. This variance
in the drag measurement and growth of live biofilms under theoretically similar conditions makes
the development of a general understanding of the mechanisms linking biofilms and drag, and the
development of models able to predict it challenging. The main objective of the present study is
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to address the challenges presented above, specifically identifying factors that contribute to the
observed drag measurement spread of live fouling, by considering three aspects of the problem.
These are,

-First, we identify several synthetic materials to mimic live fouling. By using components
derived from actual biofouling, such as Carrageenan or Alginate, or compliant textures like PDMS,
we study the impact of mechanical properties (compliance) on drag production for various fouling-
like materials.

-Second, we address the variation in drag measurements due to coverage and distribution. By
varying the arrangement of synthetic biofouling test substrates, we study the effect of the total
coverage area and distribution.

-Third, we leverage our current collaboration with NRL-Key West to perform growth and drag
studies on live fouling found in Key West, Florida. We accomplish our goal by using a turbulent
channel flow setup designed for live fouling and by performing controlled growth studies using a
facility designed to study the effect of shear, temperature, sunlight, and nutrients.

Figure 8.1: Photographs of biofilms grown on acrylic test surfaces are recorded before, during, and after experimental
trials at the skin friction flow facility (SF3). The four image pairs are overhead photos of biofilms grown for three
different nominal incubation times (three, five and ten weeks) recorded before and after a trial. Two different three
week panels are shown, displaying the large variety of growth for the shortest incubation time studied. The panels
are 1.14 m in length and flow moved from left to right during growth and trials. From Hartenberger et al. (2020).

8.2 Developing synthetic materials to replicate biofouling
As discussed before, experiments involving the drag production of biofilms are challenging, mainly
due the lack of repeatability caused by non-uniform growth at nominally equal conditions and
sloughing. To overcome this, we develop synthetic materials capable of replicating the effects of the
live specimens. The samples have been developed in collaboration with Prof. Jon Estrada at the
University of Michigan. The advantage of this approach relies on the capability to carefully control
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the mechanical properties of the artificial samples, and their distribution over the surface (both
arrangement and coverage area). An expected outcome is to isolate the effect of material properties
and/or distribution on the drag measurement spread observed in live fouling experiments at the
same conditions. Three materials have been explored for the artificial surfaces: carrageenan-based
hydrogels, alginate-based hydrogels and polydimethylsiloxane (PDMS).

Carrageenan-based hydrogels

Carrageenan is a natural component extracted from seaweed that can produce water-based hydro-
gels (Therkelsen, 1993). By controlling the concentration of the material in the dissolution and
immersion time in water, hydrogels with various strengths can be extracted. Figure 8.2 presents
a set of mechanical properties tests conducted for carrageenan-based hydrogels of concentration
ranging from 1 to 2.5% and submersion time ranging from 0 to 48h. The samples are made by
mixing water and carrageenan at constant stirring (300 rpm) and 90◦C for 3 hours, with an extra
hour under no stirring for the mixture to set (while keeping the temperature). Then, the samples
are cast into molds and left for a day at 4◦C. The tests are conducted using dynamic mechanical
analysis (DMA), and consist of steady and dynamic cases. The steady set involves compression at
a constant velocity, where the deformation is recorded (left column, Figure 8.2). The second set
corresponds to a dynamic amplitude sweep test, where the deformation is applied in a sinusoidal
form (compression-relaxation), and the amplitude is increased under a constant frequency. The
results suggest that larger concentrations of the sample provide stronger hydrogels, as observed by
the steepness of the deformation versus stress curve. Water submersion time weakens the samples
and reduces their mechanical strength.

Although repeatable samples were obtained, testing at the flow tunnel facility showed a large
degradation of the hydrogels at low velocities, with the samples losing more than half of the volume
after less than 15 minutes of continuous flow velocity at less than 2.5 m/s. High-speed recorded
videos suggest that the samples are being peeled off at a constant rate by the forces exerted by the
flow. This undesired degradation prevents us from using carrageenan as a candidate for repeatable
drag studies, but opens the door to sloughing analysis, since the degradation can be controlled by
tuning the properties of the original synthetic biofouling.

Alginate-based hydrogels

Alginates are polysaccharides isolated from brown algae such as Laminaria hyperborea and Lessonia
found in coastal waters around the globe (Augst et al., 2006). Our samples are developed using
the double crosslinking method proposed by Ji et al. (2022), as depicted in figure 8.3. First, a
weak hydrogel is formed with a mixture of sodium alginate with a total weight concentration of
2% and a CaSO4 solution of 0.3%. The mixture is stirred at 300 rpm at room temperature for a
duration of 3 hours and then placed in vacuum to remove the air. This procedure helps to hold the
shape of the hydrogel, and creates an initial weak specimen, with a semi-transparent appearance,
as depicted in figure 8.3. After curing at 4◦C for one day, the samples are immersed in a CaCl2
bath with a molarity of 0.1M for another day to enhance the mechanical strength of the samples.
The differences after the cross-linking method are highlighted by the amount of calcium in the
overall hydrogel, represented by the white color, in contrast to the transparent appearance of the
original surface. The external crosslinking bath greatly enhances the mechanical capabilities of the
hydrogel (Ji et al., 2022), and preliminary testing has shown that the material is able to stay intact
for more than 30 minutes when exposed to constant flow velocity of 5 m/s. We plan on performing
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Figure 8.2: Mechanical properties analysis of the carrageenan-based samples. Left column presents the steady testing,
and right column introduces the dynamic sweeps.

Figure 8.3: Procedure followed to make alginate synthetic biofilms. Tope left shows the first step of the process, an
internal crosslinking of sodium alginate with CaSO4. Top right displays the results after the internal crosslinking
with a CaCl2 bath. Bottom figure shows the samples already installed in the flat plate.

skin-friction measurements for a range of material properties and distributions in the upcoming
months.

PDMS

The last artificial component developed is based on Polydimethylsiloxane (PDMS). This type of
component has been used to replicate flexible and compliant materials, and by properly tuning its
components, can provide a vast range of mechanical properties (Palchesko et al., 2012; Wang et al.,
2020). Although this element does not have an organic base, its compliant-like properties allow
us to use it for our study. Several blends of the material will be used, and the effects of various
mechanical properties will be analyzed.
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Figure 8.4: The Skin Friction Flow Facility (SF3).

8.3 Effect of surface distribution and area coverage
Measuring or estimating the drag produced by biofouling is a challenging problem. Live organisms
tend to grow in heterogeneous arrangements, with varying spatial and height distribution. In such
cases, classical methods of predicting the drag caused by a surface with homogeneous roughness,
such as the equivalent sand grain roughness, need to be revised. Although work has been done
to account for heterogeneity, both in the spanwise and streamwise axis (Hutchins et al., 2023;
Frohnapfel et al., 2024), the vast majority of the previous studies consider hard biofouling-like
components, such as sand paper. When it comes to soft biofouling, the compliant nature of the
specimens, or the presence of filaments, can make classical approaches not reliable.

To better advance our understanding of the latter, we propose a systematic approach that
will use the synthetic materials developed before to build plates mimicking the growth of fouling
(informed by experiments at Key West) in a controlled manner. By using artificial samples, we can
tackle the two main problems presented before, repeatability and growth heterogeneity. Here, we
start by conducting drag measurements on flat plates with spanwise heterogeneity made of strips of
sandpaper. We analyze the effects of varying the area coverage, and the distribution arrangement
around the plate. Next, we will present preliminary results involving the use of compliant, soft
materials.

Skin-friction flow facility (SF3)
All the experiments presented here have been conducted at the University of Michigan Skin Friction
Flow Facility (SF3). The SF3, shown in figure 8.4 is a high-aspect ratio, closed channel flow facility
with fully developed turbulent flow in the test-section, capable of reaching ReH ∼150,000. The
SF3 channel gap height, H0, is nominally 7 mm, span is 101.6 mm, and has a downstream length
of 1.14 m. The SF3 measures the skin-friction Cf of surfaces based on the pressure drop across the
10 pressure ports (located at 20H, 30H, 50H, 70H, 84H, 98H, 112H, 126H, 140H, and 150H) along
the test-section as shown in figure 8.4. The flow is tripped after passing through honeycombs and
mesh screens at the entrance to the channel using an 80 grit sandpaper strip. Only measurements
acquired in the fully developed turbulent flow region (between 70H and 150H) are used for the
pressure gradient estimation. The volumetric flow rate, Q, was measured using a Siemens Sitrans
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Figure 8.5: Plate configurations considered in this study. Plate I and Plate III are examples of two arrangements
with a similar coverage area. Blue areas represent the location of the roughness strips.

FM MAG5100 magnetic flow meter. The temperature is also measured using an RTD and logged
during data acquisition. Density and kinematic viscosity are obtained as functions of the logged
temperature following the ITTC freshwater tables. The measurements at each step are averaged
after trimming 5 seconds post and pre transition to another step. The averaged measurements
along with the known streamwise port location are used to estimate the pressure gradient dp/dx
used in the estimation of the shear stress at the wall. An accurate estimation of the shear stress
relies upon the correct dp/dx, and height measurements. The bottom window of the SF3 used in
conjunction with the fur surfaces is a hydrodynamically smooth panel with an optically clear fused
quartz insert for PIV laser illumination. Simultaneous PIV measurements are acquired during the
pressure data acquisition. The velocity profiles enable the extraction of the shear stress on the
smooth panel as well as the correct channel height using the method detailed below.

As discussed before, arrangement and coverage of rough and biofilm-like elements on a flat
plate can play a major role on its drag performance. To further analyze it, we start by placing
hard-like biofouling in the shape of sand paper on a flat plate under different arrangement, in the
configurations depicted in figure 8.5.

Preliminary results: Two configurations have been studied so far. The first is Plate I, where
strips of 80-grid sandpaper are distributed perpendicular to the flow, and equally spaced in the
streamwise direction. The coverage is varied from 0% (control case, or smooth), to 100%. We
observe a non-linear evolution of the drag increase, with a peak penalty being reached for a coverage
of around 20%. Since the strips are protruding into the flow, we hypothesize that the constant
obstacles encountered by the water as it advances across the plate can be responsible for such
behavior. To evaluate the arrangement effects, we prepare a second plate, where the thickness of
the strips is doubled. By doing so, we reduce the number of strips by half for a given coverage
area, hence diminishing the number of obstacles encountered by the flow. This new configuration
promotes a drag increase for a comparable coverage ratio of 30% less than Plate I, highlighting the
relevance of distribution on drag performance. To further assess these effects, further studies will
analyze similar configurations, but with the strips being flushed with the surface.

When it comes to soft biofouling, preliminary data presented in figure 8.7 shows that a flat
plate covered with circular PDMS samples flush with the surface, for a total coverage area of 10%,
increases the drag with respect to a flat plate by around 7%. Although only one test plate has been
studied so far, it suggests that the presence of compliant-like patches on a flat plate can increase its
drag, even if the mentioned biofilm-like surfaces are flushed with the surface. Further studies will
involve the use of several blends of PDMS (to ensure various levels of compliance), and alginate
biofilms under different homogeneous and heterogeneous arrangements around the plate, coverage

140



Understanding the Drag Production Mechanisms of Soft Biofilms using Live Species and Synthetic
Replicates

Figure 8.6: Coefficient of friction vs ReH and drag penalty for plates with strip-like roughness obstacles.

Figure 8.7: Schematic of Plate II covered with soft-like biofilms, along with coefficient of friction and drag penalty
vs ReH for plates with artificial biofouling with PDMS base.

areas, and protrusion heights.

8.4 Controlled growth of live biofilms
Environmental and flow conditions are critical for the growth of biofilms. Aspects such as light,
temperature, or flow conditions can largely impact the type and density of the biofouling community
that grows on a given surface. To further study this aspect, a growth-loop has been designed, built,
and installed at the Naval Research Facility in Key West. The design of the facility is depicted in
figure 8.8.

The growth facility intakes water from the ocean in an open-loop configuration and provides
enough flow to feed three chambers. Each of those chambers is independent, and its growing condi-
tions can be fully controlled without affecting the others. This opens the possibility of conducting
a parametric study to assess the impact of aspects such as sunlight or flow velocity have on the
growth of fouled surfaces. The velocity at each of the modules is controlled by a flow meter, and
can be varied using a set of inlet valves. Each of the growth chambers is able to hold 4 flat plates,
and is designed with a transparent acrylic cover to allow sunlight into them.

Preliminary findings shown in figure 8.8 show a substantial growth of algae after a period of
8 days, with constant velocity and sunlight exposure. Further work will include an analysis of
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Figure 8.8: Growth loop design and schematics (left). Detail of one of the growth modules installed at NRL Key
West after 8 days of growing time. Algae communities are observed both in the module and on the plates.

the colonies on the plate via DNA sequencing, 3D scans of the surface to assess arrangement and
coverage, and drag studies to better understand the mechanisms of drag-producing biofilms.
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Understanding the Drag of Soft Biofilms: A
Multidisciplinary Experimental Approach
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Biofilms forming on marine vehicles produce undesirable effects such as increased skin-
friction drag, and material and performance degradation. In this study, we analyze the
drag production and biological composition of native soft fouling species found in ambient
water at the Naval Research Laboratory in Key West (NRL-KW). Drag measurements
highlight a large drag production disparity for test cases with biofouling developed under
similar conditions and growth times, which could be caused by growth heterogeneity. To
further understand this, we develop synthetic materials to replicate and study biofouling
in a controlled and repeatable way. By varying the distribution of these materials in flat
plates, both in terms of area coverage and distribution, and the mechanical properties of
the biofilm-like surfaces, we aim to obtain a better understanding on the key aspects of
drag produced by biofilms.

9.1 Introduction
Soft and hard biofilms forming on marine vessels and vehicles produce undesirable effects such as
increased skin-friction drag, and material and performance degradation, as seen in previous studies
(Schultz and Swain, 2000; Schultz et al., 2015; Hartenberger et al., 2020; Andrewartha et al., 2010).
Understanding the growth and the drag produced by soft films in a marine environment is a chal-
lenging multidisciplinary problem difficult to study in a laboratory setting. The interdisciplinary
nature of the problem stems from the interaction of several features including the type and the
distribution of species (diatoms, bacteria, etc.), their growth dependence on environmental factors
(growth duration, flow conditions, temperature, salinity, substrate properties, etc.), the nature of
the resulting fouling morphology (presence of streamers, compliance, etc.), and the drag produced
by the resulting fouled surface. In addition to these challenges, growth nonuniformities and slough-
ing make repeatable drag measurements challenging thereby resulting in a lack of understanding of
drag production mechanisms. Here, we present recent work toward understanding the growth and
drag production mechanisms of live, soft biofilms and artificial biofilm-like surfaces. The drag and
biological composition of native soft fouling species found in ambient water at the Naval Research
Laboratory in Key West (NRL-KW) for a growth duration of two, eight, and twelve weeks will be
presented. Trends, challenges, and lessons learned from measuring the drag of live fouling using
a one-of-a-kind turbulent channel flow will be discussed. Findings from the drag measurement of
several artificial fur-like and hydrogel-compliant surfaces will be presented and compared with live
biofouling behavior. Finally, a strategy based on the findings of the two studies to understand the
growth and drag of live fouling will be presented.

1University of Michigan, Ann Arbor, MI
2Precise Systems Inc., 22290 Exploration Dr., Lexington Park, MD 20653
3Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375
4Naval Research Laboratory, 1009 Balch Blvd, Stennis Space Center, MS 39529
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Figure 9.1: Example of the artificial biofilms. Flat plate with carrageenan hydrogel samples at different concentrations.
Samples are colored for visualization purposes.

Figure 9.2: A CAD rendering of the BSVF illustrating various components. (b) Picture of the BSVF installed at
NRL-KW. Several minor differences exist between the CAD model and the actual flow loop at NRL. The loop is
constructed using transparent materials to facilitate unwanted fouling growth monitoring during and after testing.
The loop is designed to handle freshwater and seawater with temperature control (cooling tank shown as 4B).

9.2 Approach
Flat plates in a flow-through ambient seawater trough were submerged for 12 weeks, and measure-
ments were conducted at 3, 8, and 12 weeks to analyze the effects of biofilms on drag production.
First, to analyze the effects of soft films on drag production, we developed hydrogels with Car-
rageenan and Calcium Alginate base at different concentrations. The mechanical properties of the
samples were acquired using a Dynamic Mechanical Analyzer under steady and dynamic compres-
sion tests at several amplitudes and frequencies, and both in dry and wet conditions. Once the
samples were properly characterized, we placed them on a flat plate under different surface distri-
butions and coverages, aiming to analyze the effects of those parameters, together with mechanical
properties and protruding height, on the drag characteristics of the elements. The final results will
analyze surface arrangement, both homogeneous and heterogeneous, in increasing coverage ratios
in an effort to replicate the growing effects of live biofilms. We will also force sloughing to better
understand the real conditions experienced when conducting experiments with live colonies. An
example of a plate with several carrageenan based artificial fouling samples is presented in Figure
9.1.
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Figure 9.3: Drag increase vs Re (height based) for live biofilms at three growth stages. 3 Weeks (yellow), 8 weeks
(orange), and 12 weeks (red). 5 different pairs of plates are tested for each growth to analyze repeatability.

A recirculating flow channel (BSVF at NRL-KW, and SF3 at University of Michigan) is used to
assess the drag characteristics of live and artificial biofilms. The SF3 and BSVF measures pressure
drop along the channel at eight locations in the streamwise direction: four in the development
region and four in the developed region to estimate wall shear stress. Bulk velocity is estimated
using a flow meter and in situ channel height measurements using a micrometer. Currently, the
BSVF estimates Cf (skin-friction coefficient) of surfaces (smooth, rough, fouled) mounted on both
the top and bottom sides of the fully developed channel flow. Using the pressure drop measurement,
channel height, and mean velocity, the wall shear stress and the skin friction are estimated. Drag
measurements from the BSVF have been validated against the expected drag of a smooth plate in
a turbulent channel flow reported from the literature.

9.3 Results

Preliminary results of the drag measurements conducted on live biofilms are presented in Figure
9.3. We observe that growing time tends to increase the drag penalty (with respect to a smooth
plate), but a large spread is observed between different pairs of plates grown for the same amount
of weeks. For the highest Re considered, Pair D produced a drag increase of around 20%, while
Pair E showed a much larger drag increase of 60%, highlighting the challenges of biofilm testing.
Biological and genetic testing of the plates will be presented to provide addition information to
this disparity, which could be caused from different surfaces arrangements or biological differences
across the pairs of plates studied. We will also introduce the results obtained for the artificial
biofilms and compare them with natural biofilms tested at NRL-KW.
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Two-Way Coupled Simulation of
Biofouling-Inspired Dynamic Roughness in
Turbulent Channel Flow

Divyanshu Gola, Soham Prajapati1 & Krishnan Mahesh

Simulation results are presented from a two-way coupled fluid–structure interaction (FSI)
framework developed to examine the influence of wall-mounted deformable elements on
turbulent channel flow, as a model for biofouled surfaces. The governing equations of the
one-continuum formulation are solved using a finite volume-based, Euler–Euler approach,
enabling simultaneous treatment of the fluid and hyperelastic solid phases. The channel
walls are populated with a neo-Hookean cuboidal element of two different heights, one ex-
tending into the logarithmic region and the other into the outer layer of a turbulent channel
flow at friction Reynolds number Reτ = 180. The simulations resolve the coupled dynamics
between turbulent eddies and the deformable structures, highlighting modifications to near-
wall vortical motions and element deformation. The results demonstrate the capability of
the present framework to capture key mechanisms of turbulence–structure interaction in
turbulent channel flows and provide a foundation for systematic extensions to arrays of
elements and realistic biofouled wall conditions.

Keywords: fluid–structure interaction, turbulent channel flow, biofouling, neo-Hookean
elements, one-continuum formulation

10.1 Introduction
Vessels that remain at sea for extended periods frequently experience the accumulation of a slimy
layer on their hulls, which reduces performance by increasing drag and decreasing propulsion ef-
ficiency. This phenomenon, known as biofouling, can be broadly classified into hard (calcareous)
and soft types. While hard biofouling has been extensively investigated through both experiments
and simulations (Kaminaris and Balaras, 2024), soft biofouling presents greater challenges. These
arise from the diversity of viscoelastic properties and constitutive models used to describe biofilms
(Wilking et al., 2011; Estrada et al., 2018; Peterson et al., 2015), as well as the difficulties in
producing laboratory analogues or in controlling the growth of real biofilms under experimental
conditions (Tsagkari and Sloan, 2018). From a modeling perspective, two-way fluid–structure in-
teraction (FSI) between fluids and viscoelastic solids emerges as a promising approach to address
this problem.

Numerous studies have attempted to characterize the mechanical properties of biofilms and
their response in shear flows. Biofilms are often modeled as viscoelastic solids consisting of bacterial
organisms embedded in an extracellular polymeric matrix, with shear modulus (G) and viscosity
(µ) as key parameters. These can be measured experimentally using oscillatory shear to extract
storage and loss moduli (Stoodley et al., 1999). Theoretical frameworks often represent biofilms
using spring–dashpot systems arranged in series and/or parallel, depending on the deformation

1University of Minnesota, Minneapolis, MN
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regime of interest (Peterson et al., 2015). Experiments further demonstrate that biofilms, being
living systems, can actively adapt to applied shear, leading to phenomena such as strain stiffening
and hysteresis (Rupp et al., 2005; Araújo et al., 2016).

In recent years, Eulerian-Eulerian two-way FSI methods have been developed in which the fluid
and solid are treated as a single continuum, with the phases distinguished by a solid volume frac-
tion. Within this framework, density, viscosity, stress, and velocity fields are defined monolithically
and solved in a coupled manner (Prajapati et al., 2025). The Eulerian nature of the method is
maintained by introducing additional advection equations for the solid fraction and the solid de-
formation tensor. Since these equations must resolve sharp phase interfaces, specialized numerical
schemes such as geometric volume-of-fluid methods (Fakhreddine et al., 2024) and Weighted Es-
sentially Non-Oscillatory (WENO) reconstructions (Liu et al., 1994; Jiang and Shu, 1996) are often
employed. Using this approach, Sugiyama et al. (2011) validated different viscoelastic material
models, while more recent studies have applied it to compliant-wall problems in turbulent channel
flows (Esteghamatian et al., 2022; Prajapati et al., 2025).

Despite advances in numerical modeling of biofilms (Garćıa et al., 2020) and roughness effects
associated with hard biofouling (Jensen and Forooghi, 2025), studies directly addressing the coupled
interaction of turbulent flow with soft, biofilm-like structures remain limited. Experimental efforts
in related directions include investigations of canopy–turbulence interactions by Park and Nepf
(2025) as well as interaction of compliant wall with a turbulent boundary layer by Wang et al.
(2020), but the fluid–biofilm problem remains largely unexplored.

The present study extends two-way FSI simulations toward realistic modeling of soft biofouling
and aims to be the first step towards modeling turbulent flow over complex biofouled surfaces.
The Euler-Euler method offers an accurate way to not only simulate the fluid-solid interaction,
but also to analyse various quantitative metrics related to the solid itself, thereby presenting a
strong case for its use in advanced FSI problems (multiple elements, real biofilm models, etc.).
The results presented here are a brief testament to that potential. Specifically, we investigate the
compliance of a cuboidal viscoelastic element attached to the wall of a turbulent channel flow at
a friction Reynolds number Reτ = 180. The objectives of this work are to determine: (i) how
structural compliance modifies the wake dynamics, (ii) the additional resistance or drag exerted by
a compliant element, and (iii) how wall-mounted compliant obstructions alter the outer turbulent
flow. The problem setup and methodology are presented in Section 10.2, results in Section 10.3,
and discussion and outlook in Section 10.4.

10.2 Methodology

Problem setup
Figure 10.1 shows a schematic of the computational setup. A cuboidal element of height h and
square cross-section side s is mounted on the bottom wall of a channel of height 2H. The streamwise
direction is denoted by x, vertical by y and spanwise by z. The channel Reynolds number is defined
as

Rech = ρfUbH

µf
,

where ρf and µf are the fluid density and dynamic viscosity, and Ub is the bulk velocity obtained
from a precursor periodic channel-flow simulation used to generate inflow conditions (see Domain
and Boundary Conditions).

Each case is simulated in two stages: (i) a non-FSI stage, where the solid is rigid and the flow
is allowed to develop until reaching statistical stationarity, and (ii) an FSI stage, where structural
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Flow 

Bottom wall

Top wall

Figure 10.1: Schematic of the simulation setup.

compliance is activated. In the FSI stage, the solid is modeled as a neo-Hookean hyperelastic
material (Sugiyama et al., 2011) characterized by shear modulus G, density ρs, and viscosity µs.

Governing equations

For non-FSI simulations, the solid region is masked from the fluid. For FSI simulations, a one-
continuum formulation is employed by introducing a solid volume fraction ϕ ∈ [0,1]. The governing
equations are the incompressible Navier–Stokes equations written for the mixture field:

∂ui

∂t
+ ∂(uiuj)

∂xj
=−1

ρ

∂p

∂xi
+ 1
ρ

∂σij

∂xj
+gi, (10.1)

with the incompressibility condition
∂ui

∂xi
= 0. (10.2)

The mixture density, viscosity, and velocity are defined as

ρ= ϕρs +(1−ϕ)ρf , µ= ϕµs +(1−ϕ)µf , ui = ϕus
i +(1−ϕ)uf

i .

The stress tensor is expressed as
σij = ϕσs

ij +(1−ϕ)σf
ij , (10.3)

where the fluid stress is purely viscous,

σf
ij = µf

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (10.4)
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and the solid stress includes both viscous and hyperelastic contributions,

σs
ij = µs

(
∂ui

∂xj
+ ∂uj

∂xi

)
+G

(
Bij− δij

)
. (10.5)

Here, Bij is the left Cauchy–Green deformation tensor, which evolves as (Hameduddin et al., 2018)

∂Bij

∂t
+uk

∂Bij

∂xk
=Bik

∂uj

∂xk
+Bkj

∂ui

∂xk
. (10.6)

The advection of the solid volume fraction is given by
∂ϕ

∂t
+ui

∂ϕ

∂xi
= 0. (10.7)

Further details on the formulation and validation can be found in Prajapati et al. (2025).

Domain and boundary conditions
Two element aspect ratios are considered: h/s = 2 and 5. The domain dimensions are identical
across the two cases:

0< x

s
< 30, 0< y

s
< 20, 0< z

s
< 10π,

with H/s= 10. Thus, the element tips extend respectively into the inner layer, log layer, and outer
layer of the turbulent channel flow. The element is centered at (x/s,z/s) = (10,5π).

The channel Reynolds number is Rech = 2800, corresponding to an element Reynolds number
Res = 280. The density ratio is fixed at ρs/ρf = 1, while the viscosity ratio is µs/µf = 1000 (Zhang
and Bishop, 1994; Peterson et al., 2015). The normalized shear modulus is G/(ρfU2

b ) = 10.
A nonuniform grid is used in x and z and a uniform grid in y. The uniform section spans

6 < x/s < 14 and 5π− 2 < z/s < 5π+ 2, with mild stretching (≈ 0.4%) elsewhere. The minimum
grid spacing is ∆xmin/s= ∆y/s= ∆zmin/s= 0.03125, yielding a grid size of 678×640×628.

The inflow boundary condition at x= 0 is obtained from a precursor periodic turbulent channel
simulation at Rech = 2800 (Reτ = uτH/ν = 180, where uτ =

√
τw/ρ is the friction velocity calculated

using the mean wall shear stress τw), with the same domain size in y and z but coarser resolution
(286× 164 in y–z) and temporal step ∆tUb/H = 4× 10−3. For the present simulations, bilinear
spatial interpolation and linear temporal interpolation are applied to transfer the inflow fields.

At the outlet, a convective boundary condition matching the channel mass flux is imposed.
No-slip conditions are enforced at the top and bottom walls, and periodicity is applied in z. In
the non-FSI cases, the solid region is masked with no-slip boundaries. In the FSI cases, Neumann
boundary conditions are applied for ϕ, and extrapolation is used for B at the inlet, outlet, and
walls.

A uniform time step of ∆tUb/H = 10−4 is used. The momentum equations are advanced using
the second-order Crank Nicolson scheme. The advection of ϕ is handled by a geometric volume-of-
fluid method (Fakhreddine et al., 2024), while B is advanced using a fifth-order weighted essentially
non-oscillatory (WENO-5) scheme (Dominguez et al., 2024).

10.3 Results

Element deformation and stress
Figure 10.2 shows the temporal evolution of the solid elements shortly after transitioning from the
non-FSI to the FSI stage. The interface is visualized using the iso-surface ϕ= 0.5.

152



Two-Way Coupled Simulation of Biofouling-Inspired Dynamic Roughness in Turbulent Channel
Flow

Figure 10.2: Element orientation following the switch from non-FSI to FSI simulation.

Figure 10.3: Instantaneous contours of the yy-component of the hyperelastic stress on the solid surface for (a) h/s = 2
and (b) h/s = 5.

The h/s = 2 element undergoes noticeable bending, reaching its mean deflected orientation
within approximately 0.4 time units after enabling FSI. The h/s = 5 element shows the largest
deviation from vertical, owing to the larger moment induced at its root. This case requires roughly
one time unit to settle into a mean equilibrium shape. The resulting wake differs markedly from the
h/s= 2 case, and instead resembles that of a rigid element tilted to a similar inclination. During the
initial transient of the h/s= 5 case, an inflection point forms in the element shape at t∗Ub/H = 0.2
and 0.4. This arises because the near-wall portion of the element experiences higher shear stress
than the upper tip. By t∗Ub/H = 0.6, the upper portion deforms sufficiently to eliminate the
inflection, producing the smoothly curved equilibrium profile observed at t∗Ub/H = 1.

Figure 10.3 shows instantaneous distributions of the hyperelastic stress component σs
yy on the

solid surface. Bending moments about the base generate tensile stresses near the windward face
and compressive stresses near the leeward face, particularly close to the wall. The higher flexibility
of the h/s= 5 element results in larger tensile stresses and reduced compressive stresses compared
with the stiffer h/s= 2 element.
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Figure 10.4: Instantaneous contours of streamwise velocity in the downstream wake of the compliant elements for (a)
h/s = 2 and (b) h/s = 5.

Element oscillation and drag
Figure 10.4 shows the instantaneous streamwise velocity contours in the downstream wake of the
compliant elements. Both cases exhibit coherent vortex shedding, which is especially pronounced
for the h/s= 5 element. The vortices are spaced at a length scale comparable to the element height.
Because the h/s= 2 element undergoes only mild bending, its wake retains a bluff-body character,
whereas the strongly deflected h/s= 5 element produces a more streamlined wake.

The oscillatory dynamics of the elements are analyzed by tracking the spanwise coordinate of the
centroid of the top surface. The element is not constrained in the spanwise direction, which allows
for free oscillations in that direction. The displacement time series is analyzed using a discrete
Fourier transform (after discarding the first time unit to remove transients). Figure 10.5 shows
both the time histories and their corresponding spectra. For h/s= 2, the dominant non-dimensional
frequency is fH/Ub = 1.11, corresponding to fh/Ub = 0.222 when normalized by the element height.
For h/s= 5, the dominant frequency is fH/Ub = 1.27, corresponding to fh/Ub = 0.635. Table 10.1
compares these frequencies with theoretical values for free vibration of a cantilever beam. It can be
observed that the h/s= 2 element primarily oscillates in its first mode, while the h/s= 5 element
exhibits second-mode vibration. The corresponding Strouhal numbers are comparable between the
two cases.

Case h
s = 2 h

s = 5

Simulation FFT (Dominant fH/Ub) 1.11 1.27
Theoretical (1st,2nd,3rd mode) 1.28,7.99,20.69 0.51,1.28,8.28

Table 10.1: Comparison of Strouhal numbers from simulation and linear beam theory.

The coefficients of pressure and viscous drag on each element are defined as

Cpx = 2Fpx

ρfU
2
b hs

, Cvx = 2Fvx

ρfU
2
b hs

, (10.8)

where,

Fpx = î ·
(
−
˛

ϕ=0.5
pn̂dA

)
, Fvx = î ·

(˛
ϕ=0.5

σσσf · n̂dA
)

(10.9)
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Figure 10.5: Time history of top-surface spanwise coordinate and its Fourier spectrum, respectively, for (a, c) h/s = 2
and (b, d) h/s = 5.

represent the streamwise components of the pressure and viscous forces, respectively, integrated
over the interface ϕ= 0.5. Here, î and n̂ denote the streamwise unit vector and local surface normal.
Figure 10.6 presents the time series of Cpx and Cvx for both cases. Owing to its bluff wake, the
h/s= 2 element experiences a pressure drag roughly an order of magnitude higher than that of the
h/s= 5 case. Conversely, the viscous drag is slightly larger for h/s= 5. Overall, the total drag is
dominated by the pressure contribution, which exceeds the viscous contribution by approximately
two orders of magnitude.

Mean velocity and mean-square intensities

Figure 10.7 shows the mean streamwise velocity contours on the z/s = 5π (z/H = π/2) plane. In
the near-body region, the bluff nature of the h/s = 2 case contrasts with the more streamlined
wake observed for h/s = 5. The corresponding mean streamwise velocity profiles on the vertical
center plane (z/H = π/2) at three streamwise locations are shown in Figure 10.8. Interestingly, the
differences between the two cases do not persist beyond y/H ≈ 0.4, which lies just above the end
of the logarithmic layer in the reference channel flow. This could be attributed to the inclination
of the h/s= 5 case, which effectively limits its vertical extent to y/H ≈ 0.3 and therefore makes its
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Figure 10.6: (a) Pressure and (b) viscous drag coefficients.

Figure 10.7: Mean streamwise velocity contours on the z/s = 5π (z/H = π/2) plane for (a) h/s = 2 and (b) h/s = 5.

impact more comparable to that of h/s= 2.
Figure 10.9 shows the mean planar velocity field (⟨u⟩,⟨v⟩) on the plane z/H = π/2, with stream-

lines overlaid on contours of the mean velocity magnitude
√
⟨u⟩2 + ⟨v⟩2. Both cases display an

upstream recirculating vortex. However, the downstream stagnation point differs in location: for
the h/s= 2 element, it lies farther from the wall and farther downstream. This happens as a result
of a larger recirculating region for the h/s = 2 case, thereby pushing the stagnation point further
downstream. In contrast, the h/s= 5 element generates a more streamlined flow pattern. It is in-
teresting to note that the streamlines for the element with h/s= 5 resemble the streamline pattern
observed by Muppidi and Mahesh (2005) for a jet in crossflow (see Figure 5 in their paper).

The mean-squared velocity fluctuations (⟨u′2⟩, ⟨v′2⟩, and ⟨w′2⟩) on the plane z/H = π/2 are
shown in Figure 10.10. The streamwise component (⟨u′2⟩) is dominant in both cases, with the h/s=
5 element exhibiting higher overall intensity than the h/s = 2 element, specially in the windward
boundary layer (Figures 10.10a,b). The bluff geometry of the h/s = 2 element, however, deflects
the flow laterally around its sides rather than over the top, as occurs for the more inclined h/s= 5
case. This lateral deflection, combined with the incoming turbulent fluctuations, leads to enhanced
spanwise velocity fluctuations (⟨w′2⟩) in the h/s= 2 case relative to h/s= 5 (Figures 10.10e,f).
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Figure 10.8: Mean streamwise velocity profiles on the vertical center plane (z/H = π/2) at (a) x/H = 1.5, (b)
x/H = 2.0, and (c) x/H = 2.5).

Figure 10.9: Mean streamlines plotted on contours of mean planar velocity magnitude on the vertical center plane
(z/H = π/2) for (a) h/s = 2 and (b) h/s = 5). Yellow circle represents stagnation point downstream.
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Figure 10.10: Contours for mean-square intensities on the vertical center plane (z/H = π/2) for (a, c, e) h/s = 2 and
(b,d,f) h/s = 5.

10.4 Discussion

The present simulations highlight the effect of element compliance on the coupled flow–structure
interaction in a turbulent channel. The deformation dynamics reveal that element with (h/s= 2)
undergoes modest bending, leading to an asymmetric but still bluff wake, while the element with
h/s = 5 exhibits pronounced curvature and large deviations from vertical. The emergence and
disappearance of inflection points during the initial transient highlight the competition between
near-wall shear stresses and forces in outer layers of the flow in establishing the equilibrium shape.

The stress contours demonstrate that longer elements not only deform higher but also experi-
ence different hyperelastic stresses near the base. This observation is consistent with the scaling of
bending moments with element height. The pressure drag contributes approximately two orders of
magnitude more to the total drag compared to the skin-friction drag. Furthermore, the pressure
drag is higher for the shorter element, whereas the skin-friction drag is higher for the longer ele-
ment. Moreover, the oscillation frequencies of the element vibration in the unconstrained spanwise
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direction correspond to different modes of free vibration for the two elements.
The mean streamwise velocity contours and profiles indicate that, while the wakes differ signif-

icantly in the near-body region, their influence does not extend far beyond the logarithmic region
of the boundary layer. This suggests that the element geometry primarily alters the near-field
dynamics, with limited impact on the outer layer. The inclination of the h/s= 5 element appears
to reduce its effective vertical extent, making its influence on the outer flow comparable to that of
the stiffer h/s= 2 element.

The mean streamline patterns further highlight these differences. Both cases exhibit a similar
upstream vortex and outer flow streamlines; however, the downstream stagnation point for the
h/s= 2 element is located slightly farther downstream and away from the wall. Interestingly, the
streamline topology for the h/s= 5 case resembles that of a jet in crossflow. The higher streamwise
fluctuations observed for the h/s= 5 element reflect stronger interaction with the boundary layer
on the element, while the enhanced spanwise fluctuations for the h/s= 2 case arise from lateral flow
diversion around its bluff geometry. These differences suggest that element shape and flexibility
not only modify wake structure but can also lead to different distributions of turbulent intensities
among velocity components in the near-wall region.

While the present study focuses on deformation, wake dynamics and oscillatory behavior of a
single compliant element, it is also a foundation for modeling soft biofouled surfaces in the environ-
ment. A natural extension of this work is to introduce multiple deformable elements arranged in
arrays or staggered configurations. Such setups would allow us to examine the effect of distribution
for the same surface coverage, the ultimate goal being simulating turbulent flow interaction with
realistic biofouled surface configurations, obtained from field testing or grown in a lab environment.
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Statistical Modeling of Electromagnetic Waves
Scattering from Random Ocean Surfaces

Behzad Yektakhah, Ryan Strohman, & Kamal Sarabandi

Accurate modeling of electromagnetic (EM) wave propagation and scattering in complex
random environments is crucial for evaluating the performance of radar and communication
systems. In particular, modeling the scattering of EM waves from ocean surfaces plays a
vital role in both scientific research and practical applications, including microwave remote
sensing, weather forecasting, and the assessment of radar and communication systems’
performance in oceanic environments. A robust statistical model that accurately captures
the characteristics of EM waves scattered from ocean surfaces can significantly enhance
the efficiency of these assessments. Such a model enables the rapid generation of scattered
wave data across various conditions and scenarios, reducing the reliance on costly and time-
consuming field measurements. This capability is invaluable for advancing both commercial
and defense technologies while supporting the broader understanding of wave interactions
with complex surfaces. In this project, an accurate and high-fidelity statistical model
is presented to describe the random phase and amplitude of waves scattered from ocean
surfaces. The model is developed under different conditions, including wind speed, wind
direction, incident wave direction, wave frequency, and wave polarization. A method for
randomly generating scattered fields from the developed statistical models is also presented.

Keywords: electromagnetic waves, ocean surface, scattering, statistical

11.1 Introduction
As the initial step in developing a statistical model for scattering from ocean surfaces, it is essential
to acquire scattered field data under various conditions. These conditions include different wind
speeds, angular differences between the incident wave direction and wind direction, frequency, and
incident wave polarization. These data can be obtained through either measurements or simu-
lations, with simulations serving as a versatile and efficient tool for this purpose, as utilized in
this work. To generate reliable data from simulations, accurate modeling of the random surface of
the ocean is critical. The surface model must precisely represent the ocean profile at a resolution
comparable to a fraction of the electromagnetic wavelength. This ensures fidelity in capturing the
physical characteristics necessary for accurate scattering predictions under diverse environmental
scenarios. This work utilizes accurate models to represent gravity and capillary waves, two compo-
nents of ocean waves, to generate random ocean surfaces at different wind speeds. The models for
generating random ocean surfaces are presented in Section 11.2.

Due to the large wavelength of the gravity waves (hundreds of meters), numerical simulations of
scattering from the ocean surface involve electrically large problems (typically thousands of wave-
lengths). The presence of capillary waves with wavelengths smaller than or comparable to those of
typical frequencies used in naval scenarios (C-band to Ku-band) prevents the use of fast and efficient
methods like physical optics (PO). In this project, the ocean surface is modeled as an impedance
boundary condition, which significantly simplifies the numerical calculations. The surface integral
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equation representing the scattering from the surface is solved by the multilevel fast multipole
method (MLFMM). Details of the electromagnetic simulations are provided in Section 11.3.

Statistical modeling aims to provide a model to generate tangential components of the scattered
field on a near-field plane above the ocean surface for a given ocean condition and incident wave
attributes, such as incident angle, polarization, and frequency. Knowing the tangential fields on a
plane, the scattered waves can be calculated at any point above the plane. Assuming the incident
plane wave is decomposed into horizontal (h) and vertical (v) polarizations, it can be shown that the
real and imaginary parts of co-polarized components of tangential scattered fields due to incident
h and v polarizations are Gaussian random variables with a joint probability density function
described by the covariance of real and imaginary parts of co-polarized components. The same is
also true for the real and imaginary parts of cross-polarized components. To develop the model,
parameters describing the joint PDFs and also the spectral density of one of the co- and cross-
polarized components must be derived for different ocean conditions and incident wave attributes.
To use the model, random samples of one component of co- and cross-polarization are generated by
using its power spectral density, and then the other components are generated knowing the samples
of the first component at each location and their joint PDFs. Details of the statistical models are
provided in Section 11.4.

11.2 Ocean Surface Model
When the wind blows over the ocean surface, turbulent airflow first creates capillary waves with
lengths of a few centimeters and heights of a few millimeters. Capillary waves wrinkle the ocean
surface, and the water’s surface tension resists these wrinkles. As the wind continues to blow,
the capillary waves nonlinearly interact and continue to grow both in length and height, eventually
evolving into gravity waves with larger lengths and heights. Gravity waves get energy from the wind
by means of direct push by wind on their upwind faces at wave speeds lower than the wind speed or
through frictional drag of the air on the ocean surface at any wave speed. Without energy loss and
in the presence of continuous wind energy transfer, the gravity waves continue to grow infinitely.
However, the energy is transferred through viscosity to shorter wavelengths or lost through wave
breaking. As the waves grow in height, they also grow in length at a faster rate. When the height
reaches a limit and stops growing, the wavelength may continue to grow (Kinsman, 1984; Long
and Ulaby, 2015). Capillary waves are continuously generated and turned into gravity waves. As a
result, the ocean surface can be considered as a superposition of short-wavelength capillary waves
and large wavelength gravity waves, as illustrated in Figure 11.1. Large waves can propagate over
long distances and thus may not be directly related to local wind conditions. On the other hand,
capillary waves tend to be in equilibrium with the local wind. Unlike gravity waves, capillary waves
quickly disappear as the wind stops.

Figure 11.1: Capillary waves with short wavelength and gravity waves with longer wavelength (Long and Ulaby,
2015).

162



Statistical Modeling of Electromagnetic Waves Scattering from Random Ocean Surfaces

Figure 11.2: Comparison of different wave spectra at U19.5 = 20 m/s. Fetch for JONWSAP is set to 270 km, and the
significant wave height for the Ochi-Hubble spectrum is set to 10 m.

Gravity waves model

Looking at the random gravity waves, it seems that they are made up of countless random waves
with different wavelengths and amplitudes. To describe the surface, wave spectra are used. Wave
spectrum represents the distribution of wave energy among diverse wave frequencies (or wave-
lengths). The Pierson-Moskowitz (P-M) (Carter, 1982) and Joint North Sea Wave Project (JON-
SWAP) (Hasselmann et al., 1973) are two well-known ocean wave spectra. P-M spectrum is only
a function of windspeed, while JONSWAP is also a function of “fetch”. Fetch is the distance over
which the wind blows in a single direction across the ocean and generates waves. Figure 11.2 shows
an example of wave spectra for wind speed of 20 m/s at the height of 19.5 m above the mean
ocean surface (U19.5) and fetch of 270 km. Both P-M and JONSWAP spectra show a single peak.
However, in the measured ocean wave spectra, there are high-frequency components in the spec-
trum that must be modeled for a more accurate representation of the ocean waves that matters
to the radar response. These high-frequency components with smaller wavelengths are also crucial
in accurate statistical modeling of scattering from the ocean surface, as they are comparable to
the wavelength of the electromagnetic waves. The Ochi-Hubble spectrum is a six-parameter model
that provides a double-peaked spectrum with better modeling of the spectrum at higher frequen-
cies. This model includes both remote and local wind-generated waves (Ochi and Hubble, 1976).
The six parameters in the Ochi-Hubble spectrum are a function of “significant wave height”. The
significant wave height (in m), defined as the average height of the highest one-third of waves, is a
function of wind speed, fetch, and wind duration. Figure 11.2 shows the Ochi-Hubble spectrum for
the same wind speed and fetch. As it can be observed, it provides a more accurate spectrum for
high-frequency waves. In this project, the Ochi-Hubble spectrum is used. Considering N samples
of the wave spectrum S(f), the ocean surface height (h) can be randomly generated over time (t)
and position (x,y) by superposition of N waves with frequency fn traveling in discrete directions
(θn) using the following formula (Jefferys, 1987; Lin et al., 2022)
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h=
N∑

n=1
an cos(2πfnt−kn(xcos(θn)+y sin(θn))+ϕn) (11.1)

where an is the amplitude of the nth wave and is equal to
√

2S(fn)∆f (S is the wave spectrum
and ∆f is the frequency difference between the samples). Based on the discrete Fourier transform
properties, ∆f is inversely proportional to the maximum time/distance where the profile of the
wave can be generated (beyond that the profile will be repeated). ϕn is randomly generated over
0–2π with uniform distribution. kn is the nth wavenumber defined by

ω2
n = kng tanh(knd) (11.2)

where d is the water depth, ωn = 2πfn, and g is Earth’s gravitational acceleration. For deep water
(kn d≫ 1), the formula is simplified to kn = (ω2

n)/g. In (11.1), θn is randomly generated following
the wave direction spectrum (WDS) (Mitsuyasu et al., 1980). A simple model for WDS is

f (θ) = 2
π

cos2 (θ) − π2 < θ <
π

2 . (11.3)

To generate random numbers with a specific spectrum, the method “acceptance and rejection”
can be used (Flury, 1990). Figure 11.3 shows samples of a random ocean surface profile (at t = 0)
generated using the spectra shown in Figure 11.2. As expected, the Ochi-Hubble model exhibits
more local variations.

Figure 11.3: Samples of random ocean surface profile generated using the spectra shown in Figure 11.2. Left: P-M
spectrum. Center : JONSWAP spectrum. Right: Ochi-Hubble spectrum.

Capillary waves model
To model capillary waves (with wavelength in the centimeter range), the surface autocorrelation
function (R) or its Fourier transform, surface spectrum, is used. An approximate representation of
the surface autocorrelation function for the capillary waves is given by (Long and Ulaby, 2015)

R (r,ϕ) = s2 exp
(
− r

Lt

)
, (11.4)

where, s2 is the surface height variance and is an increasing function of the wind speed and Lt is

Lt = Lu cos2 (ϕ)+Lc sin2 (ϕ). (11.5)
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Figure 11.4: Sample of random ocean surface profile at wind speed of 20 m/s (scale of height is different from x and
y axes). The spectrum for gravity waves is shown in Figure 11.2 by Ochi-Hubble spectrum. Left: Gravity wave.
Center : Capillary wave. Right: Superposition of gravity and capillary waves.

In (11.5), Lu is the correlation length in the upwind direction (along ϕ= 0◦) and Lc is the correlation
length in the crosswind direction (ϕ = 90◦). In the oceanographic convention, the wind direction
ϕ= 0◦ corresponds to a flow from the south to the north. As the wind direction rotates clockwise as
seen above, ϕ increases. In electromagnetic modeling, the difference between the wind direction and
the azimuthal angle of the incident electromagnetic wave are important and so the wind direction
can always be considered equal to 0◦. Lu and Lc are decreasing functions of the wind speed and
Lc > Lu. A model relating s, Lu, and Lc to the wind speed (U) is (Long and Ulaby, 2015)

s=−0.00768+0.0237U −0.00587U2, (11.6a)

Lu = 24.25−1.56U +0.0302U2, (11.6b)

Lc = 33.89−0.225U +0.0453U2. (11.6c)

To generate two-dimensional (2D) samples of the capillary waves from the correlation function,
the following procedure can be followed (Novarini and Caruthers, 1973; Oh, 1993): (1) Generate
a set of random, uncorrelated numbers (X) with a Gaussian distribution of zero mean and unit
standard deviation. (2) Find the convolution of (filtering process) X with W where Wis the square
root of the surface spectrum (the 2D Fourier transform of the surface autocorrelation). Figure 11.4
shows a sample of the generated gravity and capillary waves and their superposition (Htotal). For
this surface, the Ochi-Hubble spectrum shown in Figure 11.2 is used. Capillary waves are generated
at a wind speed of 20 m/s. In Figure 11.4 (center) the rms height of capillary waves is 0.23 cm.
Figure 11.5 shows the autocorrelation of the capillary wave in Figure 11.4 (center) along x and y
directions. As observed, the generated wave autocorrelation follows the model.

11.3 Electromagnetic Simulation of Large Ocean Surfaces

Complex dielectric constant of saline water

The most accurate model available for the dielectric constant of water is based on a double-Debye
dielectric model (D3M) developed by William Ellison. The model was developed for seawater, and
it reduces to a model for pure water when the water salinity is set to zero Long and Ulaby (2015).
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Figure 11.5: Autocorrelation of the generated surface in Figure 11.4 (center). The curves in blue show the original
model used to create the surface.

Figure 11.6: Complex permittivity of ocean water at 20◦ and for S = 35%.

D3M is valid for frequencies up to 1 THz, the temperature range of 0–30°C, and salinity of up
to 40% (parts per thousand). The average salinity of ocean water is 35%. Figure 11.6 shows the
complex permittivity of ocean water versus frequency at 20◦C and for S = 35% .

Ocean surface as an impedance surface
Figure 11.7 shows a planar interface between two dielectric half-spaces with refractive indices of
n1 = √µr1εr1 and n2 = √µr2εr2 illuminated by a plane wave at an angle of θ1 from medium 1.
It can be shown that the ratio of the tangential electric field to the tangential magnetic field in
medium 2 at the interface (z = 0) is

Ex,2
Hy,2

= k2 cos(θ2)
ωε0εr2

= ZT E for TE polarization, (11.7a)

Ey,2
Hx,2

= ωµ0µr2
k2 cos(θ2) = ZT M for TM polarization. (11.7b)
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Figure 11.7: Plane wave at the interface of two dielectric half-spaces.

Figure 11.8: Left: θ2 and Right: ZT E and ZT M versus θ1 for εr2/εr1 = 3 and 64 (n1/n2 = 1.73 and 8).

In (11.7a) and (11.7b), k2 = ω
√
µ0µr2 is the propagation constant in the second medium and θ2 is

related to θ1 by Snell’s law of refraction

sin(θ2) = n1
n2

sin(θ1). (11.8)

According to (11.8), if n2≫ n1 and θ2 ∼= 0, (11.7a) and (11.7b) can be written as

Ex,2
Hy,2

= k2
ωε0εr2

=
√
µ0µr2
ε0εr2

= η2 for TE polarization, (11.9a)

Ey,2
Hx,2

= ωε0εr2
k2

=
√
µ0µr2
ε0εr2

= η2 for TM polarization, (11.9b)

indicating that the relation between tangential electric and magnetic fields at the interface is inde-
pendent of polarization and angle of incidence, and is described by surface impedance Zs = η2. In
general, the impedance boundary condition for electric (Ē) and magnetic fields (H̄) just above the
surface is given by Sarabandi (2022) as

n̂×
(
n̂× Ē

)
=−Zsn̂× H̄. (11.10)

In (11.10), Zs can be complex in general and n̂ is normal to the interface (= ẑ in Figure 11.7).
With an impedance boundary condition, the surface impedance can replace medium 2, thereby
simplifying the calculation of scattering from the surface for any arbitrary incident wave. Figure
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11.8 shows θ2, ZT E , and ZT M versus θ1 for εr2/εr1 = 3 and 64 (n2/n1 = 1.73 and 8). As observed for
all θ1 in the case εr2/εr1 = 64, θ2 is less than 8◦ and ZT E and ZT M are very close and independent
of θ1. According to Figure 11.6, the real and imaginary parts of the complex relative permittivity
of ocean water are larger than 55 and 34, respectively, at frequencies less than 10 GHz, and thus,
it satisfies the condition n2≫ n1(n1 = 1) and the impedance boundary condition is applicable.

Simulation of scattering from the ocean surface

Due to the large wavelength of the gravity waves (hundreds of meters), numerical simulations of
scattering from the ocean surface involve electrically large problems. As an example, an ocean
surface area of 80 m × 80 m is 1600λ0×1600λ0 (λ0 is free-space wavelength) at 6 GHz (C-band).
The solution of this huge problem requires a fast and efficient numerical method. The presence of
capillary waves with wavelengths smaller than or comparable to those of typical frequencies used
in ocean remote sensing (C-band to Ku-band) prevents the use of efficient methods like physical
optics (PO). In this work, the multi-level fast multipole method (MLFMM) is used for full-wave and
accurate analysis of scattering from large ocean surfaces. MLFMM is an alternative formulation
of the method of moments (MoM) that reduces the computational complexity (CPU time and
memory) of MoM from O(N2) to O(N log2N) and so it is applicable to electrically large problems.
In this work, the ocean surface is modeled as an impedance boundary condition (IBC) as described
above, and the surface integral equation (SIE) representing the scattering from the surface is solved
by MLFMM.

Truncation of the solution region

Figure 11.9 (top left) shows the electric surface current density distribution on a large flat perfect
electric conductor (PEC) surface (10λ0×10λ0 at 6 GHz). The source is an x-polarized plane wave
normally incident on the surface. The results are obtained by the MLFMM module in FEKO.
Though the incident field is uniform and constant over the surface, the induced currents are not
uniform and fluctuate over the surface. This fluctuation that produces error in finding the scattering
from the surface originates from the effect of a singularity near the edges of the truncated surface. To
suppress the singular behavior of the current at the edges, a resistive sheet with tapered impedance
is added to the edges of the surface. The tapered impedance gradually changes from the surface
impedance to the free-space impedance (Oh and Sarabandi, 1994). In Figure 11.9 (top right), a
tapered impedance sheet is added to the edges of the plate. The resistive sheet is divided into eight
regions, each with a width of λ0/8. The surface impedance gradually increased from 0 Ω to Z0 =
377 Ω (free-space impedance). The surface impedance of the ith region is set to

Zs,i (d) = Z0

(
di

D

)α

, (11.11)

where, D is the thickness of the impedance sheet, di is the distance from the edge of the original
surface to the center of the ith region, and α determine the profile of the tapered impedance. Figure
11.9 (top right) is shown for D = λ0 and α = 3, which exhibits much smaller variation in surface
current amplitude compared to Figure 11.9 (top left). Figure 11.9 (bottom) shows the current
distribution along the dashed line in Figure 11.9 (top right) for different αs and D= λ0. According
to the results, α = 3 is an optimum value that results in the least variation in the surface current
amplitude.
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Figure 11.9: Top left: Electric surface current density on a 10λ0 × 10λ0 PEC plate illuminated by an x-polarized
plane wave normally incident on the surface. Top right: Tapered impedance sheet (α = 3 and D = λ0) is added to
the edges of the surface in Top left. Bottom: Amplitude of electric surface current density along the line in Top right
for different α and D=λ0.

Simulation of scattering from the ocean surface

For a selected wind speed, the ocean surface profile can be generated using the Ochi-Hubble model
and the model presented for the capillary waves. For the generated surface, a resistive sheet with
tapered impedance is added to the edges of the surface. The surface is then simulated using the
MLFMM module of FEKO. Then the resulting scattered fields due to the incident plane wave (with
a specific frequency, polarization, and angle of incidence) are recorded on a surface just above the
surface. The recorded scattered fields from different surfaces are used for developing statistical
models. Figure 11.10 shows a sample of 80 m × 80 m ocean surface created at a wind speed of
10 m/s and a fetch of 140 km. The generated surface also includes capillary waves. To find the
scattered fields, the surface is divided into 64 samples of 10 m × 10 m surfaces and each is simulated
with the MLFMM solver of Altair FEKO. As illustrated, the plane wave is incident from (θ,ϕ) =
(45◦, 180◦). Figure 11.11 shows the phase and amplitude of the tangential electric field components
on a plane at a height of 1.2 m above the ocean surface for an h-polarized incident wave. The fields
are shown for one of the 10 m × 10 m surfaces. As it can be observed, the amplitude and phase
variation of the tangential fields are random. However, tangential fields have a small deterministic
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Figure 11.10: Generated ocean surface with area of 80 m × 80 m at wind speed of U19.5 = 10 m/s and fetch of 140
km. The incident plane is also shown.

component, known as the mean field, which must be extracted before statistical modeling. The
mean field is equal to the mean value of scattered fields among all 64 surfaces. The components of
the mean field are shown in Figure 11.12. As it can be observed, its y-component (cross-polarized)
is almost zero and its x-component shows almost uniform amplitude and progressive phase similar
to scattering from a flat surface, which can be analytically presented. Subtracting the mean field
from the total fields provides the fluctuating part of the field that must be statistically modeled.

11.4 Statistical Modeling of Scattering from a Random Ocean Surface

Statistical properties of the scattering from random surfaces

Considering plane wave illumination, if the incident (Ēi) and scattered (Ēs) fields are decomposed
into vertical (v) and horizontal (h) components, then the scattered field can be related to the
incident field by the scattering matrix (S)Es,v

Es,h

= ejkr

r

svv svh

shv shh


Ei,v

Ei,h

 . (11.12)

The elements of the scattering matrix, spq, are complex values in general. It is shown in
(Sarabandi, 1992) that the real and imaginary parts of each spq are independent & identically
distributed zero-mean Gaussian random variables. It can be shown that the amplitude and phase of
spq follow Rayleigh and uniform distributions, respectively. Based on the observations of scattering
data from rough soil surfaces and vegetation, svh(= shv) are statistically independent from svv

and shh and so the probability distribution function (PDF) of the real and imaginary parts (svh =
X5 + jX6) or their joint PDF (= multiplication of the PDFs of the real and imaginary parts) can
be described by a single parameter σ2

c (the variance)
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Figure 11.11: Phase and amplitude of the total tangential electric field components on a plane at z = 0.6 m above
the surface due to h-polarized incident wave. The field is shown for 1/64 of the surface in Figure 11.10.

fX5,X6 (x5,x6) = 1
2π2σ2

c

exp
(
−x

2
5 +x2

6
2σ2

c

)
. (11.13)

Because of the independence from svv (or shh), the phase difference between svv (or shh) and
svh is uniformly distributed in the range [−π,+π]. The co-polarized elements of the scattering
matrix are dependent and jointly Gaussian random variables, denoted by X1−4

svv =X1 + jX2, (11.14a)
shh =X3 + jX4. (11.14b)

The joint PDF for X1−4 is

fX (x1,x2,x3,x4) = 1
4π2

√
|Λ|

exp
(
XtΛ−1X

)
, (11.15)

where X = [X1,X2,X3, X4]t and t stands for transpose. The matrix Λ is the covariance matrix
with elements defined as λij =<XiXj >. It can be proved that λijs have the following properties

171



Statistical Modeling of Electromagnetic Waves Scattering from Random Ocean Surfaces

Figure 11.12: Phase and amplitude of the mean tangential electric field components due to h-polarized incident wave.
The phase of the x-component is progressive, similar to reflection from a flat surface.

λ11 = λ22, λ33 = λ44, λ12 = 0, λ34 = 0, λ13 = λ24, λ14 =−λ23. (11.16)

Power spectral density

Knowing the power spectral density (PSD) of a field component, random complex samples of the
field can be generated using the same method outlined for capillary waves. The PSD of a field
component (E) is defined as

PSD =
∣∣∣∣∣
¨

Ee−jkxxe−jkyydxdy
∣∣∣∣∣
2

. (11.17)

Figure 11.13 shows a sample of the PSD for a complex field component (Exh) and for an incident
wave direction of (θ,ϕ) = (45◦,180◦). The surface is shown in Figure 11.13 (bottom) and the incident
wave is h-polarized. The peak in Figure 11.13 (top) indicates the direction of specular reflection in
azimuth, i.e. ϕ= 0◦.
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Figure 11.13: Top: PSD for Exh scattered from the surface shown in bottom due to an h-polarized wave with angle
of incidence of (θ,ϕ) = (45◦,180◦).

Procedure to develop a statistical model for scattering from a random ocean surface

The surface profile, and therefore the scattering from the ocean surface, is a function of the wind
speed. The scattering also depends on the azimuthal angular difference between the incident wave
and the wind direction, as well as the polarization and frequency of the incident wave. As a result,
the statistical model must be developed for different wind speeds, frequency bands (e.g., C-, X-,
and Ku-band), angle of incidence and wind direction differences, and incident wave polarizations.
To develop a statistical model for scattering from random ocean surfaces, the following steps must
be followed (wind direction is considered fixed and only the incident wave direction is varied)

1. For a fixed wind speed, incident wave angle, and frequency:

a) Generate at least 15 random ocean surfaces.
b) For each surface, calculate the co- and cross-polarized components of the scattered fields

just above the surface for both h and v polarizations of the incident wave.
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c) Find the mean value of the fields at each sample point among all generated surfaces. The
mean field must show a phase progression similar to scattering from a flat surface, but
with a relatively small amplitude for the co-polarized wave and almost zero amplitude
for the cross-polarized component.

d) For each surface and for the fluctuating fields, find the non-zero parameters λij describing
the joint PDFs for co- and cross-polarized components (two PDFs).

e) For each surface and for one of the co/cross-polarization components of the normalized
fluctuating fields, find the PSD.

2. Repeat (1) for different wind speeds, incident wave angles, and frequencies.

Procedure to use the developed statistical model

For a given wind speed, incident wave angle, and frequency

1. Using the PSD of one of the co-polarized components of the fluctuating fields, generate the
random complex samples of the field with the same filtering technique described for the
generation of capillary waves.

2. Using λijs, form the joint PDF and calculate the conditional PDFs for the phase and amplitude
of the second co-polarized component of the fluctuating fields. The sample of the second co-
polarized component at each point can be generated by knowing the conditional PDFs and
the amplitude and phase of the first co-polarized component at the same point (from step 1).

3. Find the total co-polarized fields by adding the generated fluctuating and mean fields.

4. Repeat 1-3 for cross-polarized components.

11.5 Conclusion

An accurate and high-fidelity statistical model representing the statistical properties of electro-
magnetic waves scattered from a random ocean surface has been presented in this report. With
the developed model, scattered electromagnetic fields can be generated above the ocean surface
under specific conditions of wind speed, wind direction, and electromagnetic wave frequency and
polarization. This serves as an invaluable tool for assessing the performance of communication and
radar systems in the presence of the ocean, which acts as a complex random environment. The
procedure to develop the model from simulations of very large ocean surfaces has been discussed.
The simulation is performed by accurately modeling both large and small features of the ocean
surface under various wind conditions, and solving the scattering problem using an efficient and
accurate numerical method. The co/cross-polarized scattered fields are represented by joint PDFs
with a few parameters and PSDs. For a complete model, the joint PDF parameters and PSDs must
be found under different conditions, such as wind speed speeed and direction and incident wave
frequency.

Developing a method to reconstruct the fields from the models and finding the model parameters
under different conditions are future works in this project.
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Machine Learning-Aided Flow Field
Reconstruction from Sparse and Noisy
Measurements

Xianzhang Xu, Daria Skalitzky & Krishnan Mahesh

We applied a physics-informed deep learning method to reconstruct the flow field from
sparse and noisy particle tracks, focusing on accurately assimilating the minimum pressure
on a fine-grid domain from very sparse particle trajectories with velocity information. We
tested the performance of the deep learning model using a series of analytical vortex models
in 2D and 3D. Synthetic PTV data are generated using the analytical solutions of the
velocities; the deep learning model trains these sparse PTV data with velocity information,
and then the model reconstructs the high-resolution flow field within a fixed domain. The
results show that the physics-informed deep learning model can successfully reconstruct
the fine flow field of velocity and pressure with an observation rate of less than 1%. This
work also investigated the influence of particle density, distributions, and noise levels on the
model’s performance in pressure field reconstruction. The same approach was applied to a
twin-vortex flow field based on Large-Eddy Simulation (LES), and the model successfully
reconstructed the pressure field from sparse velocity measurements.

Keywords: data assimilation, physics-informed machine learning, particle tracking ve-
locimetry, vortex flow

12.1 Introduction
Obtaining the pressure field in flows is important to a variety of naval applications. For example,
cavitation inception, defined as the initial rapid growth of bubbles occurs when the minimum
pressure in the fluid drops below vapor pressure (Rood, 1991). It is important to know the operating
conditions at which these incepting pressures are attained. These low pressures typically occur in
highly localized small scale strained vortices that are both spatially and temporally intermittent.
Particle image velocimetry (PIV) and particle tracking velocimetry (PTV) are widely used in
experiments to measure the flow velocities (Westerweel, 1995). However, the pressure fields are
not directly measured and must be inferred from the particle measurements. Furthermore, the
minimum pressure can be difficult to accurately measure due to the sparse distribution of particles
around vortex cores as observed in Knister (2024). These challenges motivate the current work.
Figure 12.1 shows a schematic overview of our problem. Consider a complex turbulent flow, such
as the flow in the tip gap of a ducted propulsor from the simulations of (Leasca et al., 2025).
Note the dominance of small scale co– and counter–rotating vortices whose interaction significantly
influences the minimum pressures. We imagine a volume of interrogation illustrated by the box
where Lagrangian measurements from particles are obtained. The measurements are assumed
sparse, due to particles being flung out of the cores of small vortices, and noisy due to inherent
experimental uncertainties. We attempt to obtain the minimum pressure by reconstructing the
velocity and pressure fields on a fine Eulerian grid. We first emulate this scenario by generating
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Figure 12.1: Schematic of the flow field reconstruction problem for vortex flow. The figure on the far left is from the
simulations of Leasca et al. (2025).

sparse and noisy measurements of velocities for certain canonical vortex flows, and then apply the
methodology to a complex turbulent flow.

Flow field reconstruction, especially the pressure field, is challenging. One of the most com-
mon approaches is isolating the pressure gradient terms from the incompressible Navier-Stokes
equations and solving the Poisson equation for pressure (Van Oudheusden, 2013). Similarly, some
works directly integrate the pressure gradient from the Navier-Stokes equation along a specific
path in the flow field (Murai et al., 2007). The work in Liu and Katz (2006) introduced a virtual
boundary integration scheme to obtain the pressure distribution by integrating the material accel-
eration. Another approach considers the flow field reconstruction as a data assimilation problem.
For example, Zhang et al. (2020) used a generalized least squares method to incorporate the uncer-
tainty of the pressure gradient into the optimization process to reconstruct the pressure field. Some
works (Wang et al., 2019; Buchta et al., 2022) use the ensemble-based and adjoint-based variational
methods. Recently, machine learning methods have attracted much attention in solving fluid dy-
namics problems. In Özbay et al. (2021), a convolutional neural network (CNN) is used to infer
the solution of the 2D Poisson equation on a Cartesian grid. Physics-informed Neural Networks
(PINNs) (Raissi et al., 2019), which is a type of deep learning model that incorporates the physical
governing equations into the training loss function of the neural network, have been used in related
problems. Zhou et al. (2023) and Hasanuzzaman et al. (2023) have implemented PINNs to improve
the accuracy of PIV measurements and PTV reconstructions, and also to assimilate the pressure
field of turbulent flow, as shown in Leoni et al. (2023). These works have shown that PINNs have
the dual ability to both interpolate the velocity field and assimilate the pressure field, and that it
is less sensitive to the noisy data in comparison to the traditional method. Therefore, PINNs could
be useful for reconstructing the pressure field and obtaining the minimum pressure from the sparse
PTV measurements. However, these previous works focus on the application to different flows and
comparison to the traditional methods.

We seek a more comprehensive study on the performance of PINNs for the flow field recon-
struction and the acquisition of the global minimum pressure from the sparse and noisy PTV
measurements. We apply a framework based on PINNs to reconstruct the fine-resolution flow
field in Eulerian from the sparse and noisy velocity measurements in either Lagrangian or Eule-
rian, assimilate the pressure field, and obtain the global minimum pressure. We also investigate
the sensitivities of the PINN model to several uncertainty issues, including the particle densities,
measurement noise, and calibration errors. A series of canonical vortex models in 2D and 3D are
used as the benchmarks to study the performance of the PINN model towards the goal. Synthetic
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PTV velocity data are generated using the analytical solutions of the vortex models, which are
also used to generate the fine flow fields of both the velocity and the pressure for validation and
testing. Further investigations are performed to test the effects of different particle distributions
and the noise levels. Section 12.2 introduces the fundamental background of PINNs and presents
the canonical vortex models. Then the entire framework is summarized. Section 12.3 shows the
flow field reconstruction results from the synthetic PTV data. Section 12.4 discusses how particle
distribution and different noise levels can affect the accuracy and the uncertainty of the flow field
reconstruction. Section 12.6 concludes the report.

12.2 Methodology
This section reviews the technical details of the deep learning model used in this work, i.e., Physics-
informed Neural Networks (PINNs). It also introduces the analytical vortex flow models in both
2D and 3D, with analytical expressions that are used to generate the training and verification data.
Finally, the framework designed to emulate the sparse particle tracks from PTV data and then
reconstruct the entire flow field of interest is introduced.

Physics-informed neural networks

Physics-informed Neural Networks (PINNs), was originally introduced to train the deep-learning
model to learn the complex physical systems governed by the partial differential equations (PDEs),
which are usually difficult to learn by regular neural networks (Raissi et al., 2019). PINNs are
based on a multilayer perceptron (MLP) neural network architecture, which contains an input layer,
multiple hidden layers, and an output layer. The input layer is the data that has been labeled with
different features for the model to evaluate the corresponding output variables. The hidden layers
and output layer are represented by the neurons or nodes, where each neuron calculates a linear
weighted sum of its inputs plus the bias, and a nonlinear activation function to obtain the output
and passes it to the next layer until the output layer is reached. The output layer is also represented
by neurons, whose total number is determined by the problem of interest. The number of neurons
and hidden layers, however, is usually determined by the model’s performance and the problem’s
complexity. MLP neural networks can be considered as each neuron seeking an optimal fitting that
contains the process,

z = wx + b, a= σ (z) , (12.1)

where w is the weights of each input neuron x, b is the bias, and σ is the activation function, which
is non-linear. Some of the most commonly used activation functions include hyperbolic tangent,
ReLU, sigmoid, gelu, etc.. Therefore, the MLP neural networks are expected to fit both linear and
nonlinear models.

The regular MLP neural networks are trained by the loss function, which evaluates the devia-
tions from the outputs of the model and the actual reference data. Therefore, regular MLP neural
networks usually take a large amount of data to train the model, obtain the main features of the
model by optimizing the weights and bias parameters of each neuron that give the best results,
i.e., the minimum residuals of the loss function. After that, another input and output dataset
is used to validate the model. The optimization process is performed using the gradient descent
method. It works by computing the gradient of the loss function with respect to each weight and
then updating the weights in the opposite direction of the gradient to gradually reduce the error.
To efficiently compute these gradients for all layers, the backpropagation algorithm is employed.
Backpropagation applies the chain rule of calculus to propagate the error backward through the
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network, layer by layer, calculating how much each weight contributed to the final error. This com-
bination of gradient descent for optimization and backpropagation for efficient gradient calculation
allows neural networks to learn complex patterns from data.

A main feature that distinguishes PINNs from regular MLP neural networks is the loss function.
Since many complex physical systems are governed by the PDEs that also require the computation
of derivatives of key features with respect to the spatial and temporal variables, the PINN model
incorporates these PDEs into the loss function that is used to train the neural networks. Besides
the PDEs, it is also important to know the boundary conditions and initial conditions to get the
correct solutions that satisfy the PDEs; therefore, the loss function of PINNs also includes the
terms that compute the boundary conditions and initial conditions. The total loss function can be
expressed as

L= λdLd +λpLp +λbLb. (12.2)

Here λd,p,b are the weight coefficients corresponding to the loss of data Ld, loss of physical equations
(PDEs) Lp, and loss of the boundary and initial conditions Lb. Each term in equation 12.2 can
be independent of the others, which means that the sample points used to calculate the data loss
are not necessarily the same as the points used to calculate the PDE loss or the boundary loss.
This makes PINNs flexible to the data required to train the neural networks, where the regular
neural networks often require sufficient good-quality data. When no training data are available,
the loss function of PINNs corresponds to solving a PDE with known boundary conditions. When
some training data are available, PINNs can be trained with those sample data and the PDE loss
to assimilate the unknown variables in the output layer. More details of the data assimilation will
be discussed in the later sections. Since the governing PDEs generally compute the derivatives
of the physical parameters, such as velocity, temperature, and forces with respect to the spatial
and temporal coordinates, the architecture of PINNs is designed to take the spatial and temporal
coordinates as the input of the model, and the physical parameters of interest as the outputs. For
the fluid problem, it is natural to take the Navier-Stokes equations as the physical loss equation, and
the velocities and the pressure as the outputs when the external forces are negligible. Figure 12.2
shows an example of the architecture of PINNs when the 3D incompressible Navier-Stokes equations
are used as the physics information. Here, the inputs are the three spatial coordinates x,y,z and the
temporal coordinates t, and the outputs are the velocities u,v,w and pressure p corresponding to
the inputs. The outputs are post-processed by computing their derivatives and plugging them into
the momentum equations in 3 directions and the continuity equation to satisfy the incompressibility
condition. The parameters of the neural networks are updated by the backpropagation to make
sure that the gradient of the total loss function keeps decreasing throughout iterations.

Analytical vortex models

We use three analytical vortex models in both 2D and 3D as benchmarks to investigate the PINN
model in flow field reconstruction. These vortex models with analytical solutions can be used
to generate both the synthetic PTV measurements in Lagrangian for training and also the fine-
resolution flow field data in Eulerian for validation. Here, we briefly introduce all the vortex models.

a) Taylor-Green vortex

The Taylor-Green vortex is an exact, time-dependent analytical solution to the 2D incompress-
ible Navier-Stokes equations. The velocity field in Cartesian coordinates of the Taylor-Green Vortex
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Figure 12.2: The work flow of PINNs for 3D incompressible Navier-Stokes equations.

is given as
u(x,y, t) =−U cos(x)sin(y)e−2νt,

v (x,y, t) = U sin(x)cos(y)e−2νt,
(12.3)

where U is a characteristic velocity and ν is the kinematic viscosity. The pressure field can also be
derived from the velocity field expression in equation 12.3,

p(x,y, t) = p0−
ρU2

4
(
cos(2x)+ cos(2y)

)
e−4νt, (12.4)

where ρ is the density of the fluid and p0 is a reference pressure.

b) Lamb-Oseen vortex

The second analytical vortex model used is the Lamb-Oseen vortex, a solution to the Navier-
Stokes equations describing the diffusion of an initially concentrated axisymmetric vortex in a
viscous fluid. The velocity field of the Lamb-Oseen vortex is given in cylindrical coordinates:

vr = 0,

vθ (r, t) = Γ
2πr

(
1−e−r2/(4νt)

)
,

vz = 0,

(12.5)

where ν is the kinematic viscosity and Γ is the initial circulation. Since the velocity in the z
direction is zero, it can be treated as a 2D flow. To obtain the pressure field data for validation,
the velocity expressions in equation 12.5 are plugged into the Navier-Stokes equations in cylindrical
coordinates, and then the pressure field can be obtained by integrating the expression

∂p

∂r
= ρ

v2

r
, (12.6)

where v is the velocity and ρ is the density of the fluid. Lamb-Oseen vortex flow models the struc-
ture of real vortices that have a small core surrounded by a nearly inviscid region, and it includes
the unsteadiness through viscous diffusion. Therefore, it is a good basic flow to study the physics
of vortices. The Lamb-Oseen vortex model is also selected as the canonical vortex flow to help
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understand how the distribution and density of the particles affect the flow reconstruction results,
where more details will be discussed in Section 12.4.

c) Burgers’ vortex

Burgers’ vortex is also expressed in cylindrical coordinates (r,θ,z). It is an exact solution to
the Navier-Stokes equations in 3D. Burgers’ vortex model describes a steady axisymmetric vortex
in a viscous fluid and is subjected to a constant axial stretching rate a > 0. Since the stretching
balances viscous diffusion, the vortex is in a steady state. The velocity field of the Burgers’ vortex
is given as

vr =−ar,

vθ (r) = Γ
2πr

(
1−e−ar2/(2ν)

)
,

vz = 2az,

(12.7)

where ν is the kinematic viscosity and Γ is the circulation. Similar to the Lamb-Oseen vortex, the
differential equation of the pressure can be expressed by plugging the velocity solution into the
Navier-Stokes equation, and then the pressure field can be obtained by integrating equation 12.8
in the r and z directions,

∂p

∂r
=−a2r+ v2

θ

r
. (12.8)

Burgers’ vortex flow is selected as a basic vortex flow to study the vortex flow in 3D, which also
contains the axial stretching effects.

Flow field reconstruction framework

The objective of this work is to reconstruct the flow field from sparse PTV data, where both the
velocity fields and the pressure field are expected in fine resolution. Therefore, PINN is used to
solve this problem. The input variables of the PINN model are the spatial coordinates and the
time steps, and the output variables are the velocities and the pressure. In the training procedure
of the 3D problem, for example, the sparse PTV data which includes (x,y,z, t) and (u,v,w) is
given to the model to train. As addressed in the previous sections, here the pressure information
is totally unknown and set to zero. Therefore, the model only uses the sparse velocity data to
learn the maps between the spatial-temporal coordinates and the flow field quantities with the
given physical information, i.e., the incompressible Navier-Stokes equations. In addition to the
PTV data, the training samples also collect random points inside the domain of interest where no
output information is available. These points are used to compute the physical loss only. In some
PINNs works, the sample points also contain the points at boundaries and initial time, but they
are not necessary for this work since the PTV data has already provided the data loss contribution.
The training procedure ends when the training loss converges or reaches the predefined iterations.
Then the trained model is evaluated at a fine resolution of the spatial coordinates; in this work,
only the spatial grid sizes are different between the training and testing procedures. The time step
sizes are the same, but they could be different as desired by the problem of interest. The velocities
and pressure on the fine coordinates predicted by the PINN model will then be compared to the
pre-generated validation data, and the L2 relative errors for each variable are calculated.

Figure 12.3 summarizes the framework using the Burgers’ vortex as an example. The same
framework is applied to all the study cases with synthetic PTV data in this work. More details of
the data generation process are introduced in Section 12.3.
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Figure 12.3: Flow field reconstruction framework.

12.3 Synthetic PTV data generation and flow field reconstruction re-
sults

In this section, the data generation process for training and validation is introduced. The flow field
reconstruction results of the three vortex models are also presented and discussed.

Data generation
In this work, we aim to emulate the situation when the particles are sparse and may be away from the
low-pressure core. Therefore, the analytical solution of the vortex models can be used to generate
synthetic PTV tracks for training. PTV data collects the velocity information using the Lagrangian
method, where the motion of individual tracer particles is tracked through successive image frames
to reconstruct their trajectories. Therefore, the synthetic PTV data is initially generated by a low
density, such as 10×10, where each dimension has the corresponding number of random coordinates
and results in a total of 100 points. After that, at each time step, every single particle is moving
one time step forward based on the velocity, which gives the particle position for the forward time
step as

x(tk+1) = x(tk)+
ˆ
u(tk)dτ

y (tk+1) = y (tk)+
ˆ
v (tk)dτ.

(12.9)

Here, the forward Euler method is used since the main focus of this work is not on modeling the
PTV tracks, and a total of 21 time steps are sampled to generate the training data.

Figure 12.4 shows an example of the PTV particles generated for Taylor-Green vortex with a
density of 10× 10 in a domain of [−π,π], with U = 1, and ν = 0.01. In Figure 12.4a, the initial
distribution of the particles and the corresponding velocities are shown, and Figure 12.4b shows
the entire trajectories with the color map indicating the v velocity. The time window is from 0.1
to 2, with a total of 21 time steps. It is clear that the particle trajectories align well with the

183



Machine Learning-Aided Flow Field Reconstruction from Sparse and Noisy Measurements

analytical solution of the Taylor-Green vortex. Note that the particles are not set to be periodic, so
that some particles could move outside the domain of interest. The figure only shows the particles
inside the domain. The pressure data are set to be unknown for training, since the PTV data
from the experiments only output the velocities, and the objective of this work is to assimilate the
pressure field from the sparse PTV tracks.

(a) Particle distribution and velocities of u and v (b) Particle trajectories

Figure 12.4: Particle distribution and trajectories generated for Taylor-Green vortex.

Similar to the Taylor-Green vortex flow, the training data for the Lamb-Oseen vortex flow are
generated by initially sampling 10×10 random points and tracking their positions via the analytical
solution of the velocities. Figure 12.5 shows the particle distribution of the Lamb-Oseen vortex flow
at one instant time-step. The color map indicates the velocities of u and v of the particles. The
velocities are translated from cylindrical coordinates to Cartesian coordinates to be consistent with
other vortex models and also easy to follow. These 100 points are randomly generated, and it can
be seen that they are sparsely distributed in the domain. The domain size is [−1,1] in both x and
y dimensions, the kinematic viscosity is set to 0.01, and the initial circulation strength Γ is set to
1. The time window is also [0.1,2] with a total of 21 steps. Similarly, here only the particles inside
the domain of interest are shown, and those outside the domain are omitted. For the Taylor-Green
vortex and Lamb-Oseen vortex, the validation data is generated inside the same domain but with
fixed coordinates in Eulerian, with a fine resolution of 64×64.

Figure 12.5: Particle distribution for the Lamb-Oseen vortex at the initial time steps.

Figure 12.6 shows the particle distribution at an instant time step. The entire time window
is also [0.1,2] with a total of 21 steps. The flow domain size is [−1,1] in each dimension. The
stretching rate is set as a= 0.1, the circulation Γ = 1, and the kinematic viscosity is ν = 0.01. The
density of particles is 10×10×10, where 10 random coordinates are randomly generated on each
dimension, respectively, then they are combined together, resulting in a total of 1000 sample points
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at each time step. For the validation data, the flow field is the same size but with a finer resolution
of 64×64×64.

Figure 12.6: Particles generated for Burgers’ vortex at one time step.

Overall, three analytical vortex models are selected to study the flow-field reconstruction from
sparse particle tracks using PINNs. These three vortex models include the canonical benchmark
with an exact solution of the pressure field, the unsteady 2D vortex model with diffusion effects, and
the 3D vortex model with stretching effects. As mentioned before, the training data is generated as
sparse particles in the Lagrangian method, and the validation data is generated with finer resolution
in the Eulerian method.

Results of Taylor-Green vortex

The first case studied is the Taylor-Green vortex model, where the domain is set to be [−π,π], with
U = 1, ρ = 1, and ν = 0.01. The density of training particles is 10×10 and the testing resolution
is 64× 64. Figure 12.7 shows the velocity fields reconstruction results and the comparison to the
reference validation data. The outputs from PINNs are almost identical to the ground truth.

(a) u velocity, PINNs (left) and truth (right) (b) v velocity, PINNs (left) and truth (right)

Figure 12.7: Velocity field reconstruction of Taylor-Green vortex.

For the pressure field shown in Figure 12.8a, the prediction result from PINNs also matches well
with the reference ground truth. Figure 12.8b shows the pressure distribution along r, where the
PINNs result (left) is nearly the same as the ground truth (right), although some tiny deviations
can be observed, which make the result slightly noisier than the ground truth.

Overall, the flow field reconstruction results of PINNs for the Taylor-Green vortex show a high
accuracy performance. Table 12.1 summarizes the key quantities of interest in this work for flow
field reconstruction. The minimum pressure predicted by PINNs is very close to the reference value,
and the overall L2 errors in all three fields are very small.
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(a) PINNs (left) and truth (right) (b) PINNs (left) and truth (right)

Figure 12.8: (a) Pressure field reconstruction and (b) pressure distribution of the Taylor-Green vortex.

min p (ref) min p (PINNs) errors in u erros in v errors in p

-0.498 -0.497 0.17% 0.17% 0.49%

Table 12.1: Summary of the flow field reconstruction results of the Taylor-Green vortex.

Results of Lamb-Oseen vortex
The Lamb-Oseen vortex can also be treated as a 2D problem since the velocity in z is zero. With
the parameters set in Section 12.2, and also the same density of sampled particles (10× 10), the
flow reconstruction results of the velocity fields are shown in Figure 12.9. The results show a good
agreement between the PINN model and the reference ground truth.

(a) u velocity, PINNs (left) and truth (right) (b) v velocity, PINNs (left) and truth (right)

Figure 12.9: Velocity field reconstruction of Lamb-Oseen vortex.

The pressure field results shown in Figure 12.10 indicate that the PINN model successfully
captures the patterns of the pressure field, where the minimum pressure point is located at the
center of the domain and the pressure values symmetrically diffuse along the r direction. Here,
only the pressure field at the initial time (t = 0.1) is shown since the pressure values increase
over time, and the minimum pressure is obtained at the initial time. It is also observed that the
prediction results for later steps show better performance than at the initial time since the pressure
value is greater. Therefore, the minimum pressure value at the initial time is considered as a
reference to the pressure field reconstruction performance. As shown in Figure 12.10b, the general
trend of pressure distribution is well captured by PINNs, although the minimum pressure at the
center is larger than the ground truth.

Table 12.2 summarizes the flow reconstruction results for the Lamb-Oseen vortex. The relative
errors in u and v are still very small, while the errors in p are larger but acceptable. This is also
revealed by the fact that the minimum pressure predicted by the PINN model is greater than the
ground truth value.
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(a) p field, PINNs (left) and truth (right) (b) p distribution, PINNs (left) and truth (right)

Figure 12.10: Pressure field reconstruction and distribution of Lamb-Oseen vortex.

min p (ref) min p (PINNs) errors in u erros in v errors in p

-4.0 -3.63 1.01% 1.32% 7.62%

Table 12.2: Summary of the flow field reconstruction results of the Lamb-Oseen vortex.

Results of Burgers’ vortex
The Burgers’ vortex is used to study the flow field reconstruction performance for the 3D flow field
reconstruction problems. The density of particles is 10×10×10 and the reconstruction field has a
resolution of 64×64×64, which makes the observation rate as low as 0.38%. Since Burgers’ vortex
is steady, the choice of time step does not affect the results. Here in Figure 12.11, the flow field
reconstruction results are presented for the initial time step. The results show that, given the very
low observation rate, the PINN model is able to reconstruct the whole flow field in 3D, where the
prediction results are nearly identical to the reference ground truth.

(a) u velocity, PINNs (left) and truth (right) (b) v velocity, PINNs (left) and truth (right)

(c) w velocity, PINNs (left) and truth (right) (d) pressure, PINNs (left) and truth (right)

Figure 12.11: Flow field reconstruction of Burgers’ vortex.

To further examine the pressure field reconstruction results, Figure 12.12 shows the pressure
field and distribution along the r direction on the plane at z = 0.02. The prediction results match
exactly with the reference ground truth.

Table 12.3 gives the quantified results in terms of the flow field velocities and the pressure. The
minimum pressure of the prediction is nearly the same as the reference truth. The L2 relative errors

187



Machine Learning-Aided Flow Field Reconstruction from Sparse and Noisy Measurements

Figure 12.12: Pressure Distribution on a 2D plane of the reconstructed Burgers’ vortex flow field.

min p (ref) min p (PINNs) errors in u erros in v errors in w errors in p

-0.0912 -0.0913 0.78% 0.11% 0.12% 0.32%

Table 12.3: Summary of the flow field reconstruction results of the Burgers’ vortex.

are all small and almost negligible. These results indicate that even though the Burgers’ vortex is
a 3D problem, which is expected to be more complicated than the 2D problem, the PINN model
can still successfully reconstruct the flow field from the sparse PTV data. A possible reason could
be that the Burgers’ vortex is steady compared to the unsteady Lamb-Oseen vortex, which makes
the problem easier to solve since the flow does not diffuse over time. Note that, the Taylor-Green
vortex is also unsteady, but the flow does not diffuse in the space over time. Future work plans to
investigate and quantify the diffusion effects to the flow field reconstruction.

12.4 Model performance on different sample distribution and noise
level

In Section 12.3, the flow field reconstruction results of the three analytical vortex models are
presented. The proposed method works well with the Taylor-Green vortex and Burgers’ vortex,
even when the density of the sampled particles is low, as the observation is less than 1%. However,
for the Lamb-Oseen vortex, the errors in pressure are slightly higher, and the value of the minimum
pressure is also higher than the reference. In order to better understand and investigate the potential
effects on the performance of the PINN model in flow field reconstruction, a series of numerical
experiments is conducted and presented in this section. Section 12.4 studies the effects of sampled
particles’ distribution and density on the model prediction accuracy based on the Lamb-Oseen
vortex only. This section also discusses the effects of the sampling noise for all three vortex models.
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Sample distribution and density
The flow field reconstruction results in Section 12.3 are obtained from the randomly sampled
particles in a density of 10×10. Therefore, it is natural to explore how density affects the accuracy of
the minimum pressure. Besides, the particles distribution may also have an influence. In this work,
two different methods are used to generate the initial locations of the particles. In equation 12.5,
the velocity field of the Lamb-Oseen vortex is a function of r; therefore, it is worth comparing the
randomly and uniformly distributed radius r. As shown in Figure 12.13, the uniform distribution
means that the particles are generated with equal distance from the core radius rc =

√
4νt to the

margin of the domain
√

2L, where L is half of the domain length. For example, when the sample
density is 10× 10, it generates 10 coordinates equally in the range of

[
4νt,
√

2L
]
, and then 10

coordinates for angle θ randomly in the range of [0,2π], which gives 100 sample points through the
combination of r and θ. The random distribution, however, has 10 random coordinates of both r
and θ in the same range.

Figure 12.13: Illustration of the particle distribution of the Lamb-Oseen vortex.

The experiments cover 4 cases, with random and uniform radius distribution for the density of
10× 10 and 20× 20. Other properties of the Lamb-Oseen vortex are the same as the settings in
Section 12.3. For each case, the model is run 3 times and the average results are shown in Table
12.4. The results on velocities are almost the same for all cases since they are nearly the same as
the ground truth as well. For the pressure, the uniform radius cases have better results than the
random radius cases for both particle densities. Higher density also shows more accurate results
for both the minimum pressure and the total relative errors.

Density 10×10 min p errors in p min/max u min/max v

random r -3.36 12.6% -1.55 / 1.53 -1.54 / 1.50

uniform r -3.62 10.75% -1.53 / 1.52 -1.53 / 1.54

Density 20×20 min p errors in p min/max u min/max v

random r -3.64 9.18% -1.56 / 1.55 -1.55 / 1.55

uniform r -3.72 9.15% -1.54 / 1.54 -1.54 / 1.53

Table 12.4: Summary and comparison of the random and uniform radius distributions.

Sampling noise in velocity
Previous results show that the PINN model has good performance based on the synthetic PTV
data. In the real-world experiments, however, the PTV data could be noisy due to multiple reasons.
This section presents the flow field reconstruction results from noisy data, where two different noise
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sources are studied. The first one is the noise on the velocities, which can be caused by measurement
errors and uncertainties. The second one is the noise on the spatial coordinates, which can be some
errors in the calibration of the particle locations. For the first problem, the particle locations are
assumed to be accurate, while Gaussian white noise is added to the velocities.

ū= u+ ϵu, v̄ = v+ ϵv, w̄ = w+ ϵw, where ϵ∼N (0,σ) . (12.10)

Three different noise levels are tested, i.e., σ = 0.01, σ = 0.05, and σ = 0.1, which correspond
to small, medium, and heavy noise, respectively. The same approach is applied to the noise of
spatial coordinates, so that the equations are omitted here. The experiment tests are run for all
three vortex models, and for each noise level and vortex model, three runs are taken to check the
uncertainties due to the noise, and also to better examine the performance of the PINN model. All
the parameters are set the same as Section 12.3, and the low density of particles is used. Figure
12.14 shows the comparison of the velocity histories of a single particle at different noise levels.
When the noise level σ increases, significant changes and disturbances in the velocity can be seen.
For heavy noise, the time history trajectory looks very different from the clean data without noise.

Figure 12.14: Velocity histories of a single particle of Taylor-Green vortex.

The pressure field reconstruction results for the Taylor-Green vortex at different noise levels
are shown in Figure 12.15. Since the velocity fields always have good results, they are also omitted
here. The results indicate that even for heavy noise, the PINN model can still reconstruct the
pressure field with acceptable accuracy. For the specific value of the minimum pressure and the
relative errors in velocities, Figure 12.15f shows the results of all three runs, where the left subfigure
indicates the uncertainties of the minimum pressure for three noise levels, and the right subfigure
shows the average errors in velocities. For the minimum pressure, the larger noise level has a larger
influence on the variance of the prediction results; however, the values in general do not deviate a
lot from the ground truth. The errors for velocities are less than 5% even for the heavy noise level.

The results for the Lamb-Oseen vortex are shown in Figure 12.16, and the results for the
Burgers’ vortex are shown in Figure 12.17. A no-noise case is also included as the control group.
The same trend in the sensitivity of reconstructed minimum pressure to the noise levels can be
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(a) σ = 0 (b) σ = 0.01 (c) σ = 0.05 (d) σ = 0.1

(e) minimum pressure (f) errors

Figure 12.15: Pressure field reconstruction results for different noise levels, Taylor-Green vortex.

(a) σ = 0 (b) σ = 0.01 (c) σ = 0.05 (d) σ = 0.1

(e) minimum pressure (f) errors

Figure 12.16: Pressure field reconstruction results for different noise levels, Lamb-Oseen vortex.

seen for both of them. When the noise level is higher, the minimum pressure has a larger variance,
which could even result in a minimum pressure lower than the reference value when the noise is
heavy. The errors of velocities for the Lamb-Oseen vortex, however, could be very large in heavy
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noise data, although the minimum pressure is good. The pressure field for the Lamb-Oseen vortex
is also well captured by the PINN model, especially the location of the minimum pressure and the
general patterns. The heavy noise case also shows the noisiest pressure field in comparison to other
noise levels. For the Burgers’ vortex, the results are generally very good for all pressure fields, the
minimum pressure, and the errors in velocities.

(a) σ = 0 (b) σ = 0.01 (c) σ = 0.05 (d) σ = 0.1

(e) minimum pressure (f) errors

Figure 12.17: Pressure field reconstruction results for different noise levels, Burgers’ vortex.

Sampling noise in spatial coordinates

For the noise effects due to the spatial coordinates noise, all three vortex models are examined, and
each case was tested with 3 runs. Figure 12.18 shows two examples of the spatial noise and the
particle distributions for different noise levels. When the noise level is small, the general trajectories
are close to the clean control group, but the particles show large deviation when the noise is heavy.

The flow field reconstruction results are summarized in Figure 12.19. For each noise level, a total
of 3 runs were taken to test the uncertainty and also avoid the randomness. The minimum pressure
values at different noise levels for the three vortex models are shown in Figures 12.19a, 12.19b, and
12.19c. In general, the values of minimum pressure deviate more when the noise levels are higher,
while the variations in each case do not have a clear increasing trend with the noise level like that
observed in the velocity noise. For the Taylor-Green vortex, higher noise levels produce smaller
minimum pressure, but the Lamb-Oseen vortex and Burgers’ vortex show the opposite results: the
higher noise levels give larger minimum pressure. The predictions of the Taylor-Green vortex and
the Burgers’ vortex are more robust among different noise levels in spatial measurements, especially
for the Burgers’ vortex, where the effects of the spatial noise at small and medium levels are nearly
negligible. Similar to the velocity noise, higher noise levels give larger deviations of the minimum
pressure from the reference truth. However, the Lamb-Oseen vortex shows poor performance even
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(a) Taylor-Green vortex

(b) Lamb-Oseen vortex

Figure 12.18: Visualization of the spatial coordinates noise at different levels.

in the medium spatial noise. The average errors (in 3 runs) of the reconstructed velocity fields and
pressure fields are shown in Figures 12.19d, 12.19e, and 12.19f. In general, the errors of pressure are
always higher than the errors of velocity, and the errors increase with the noise level. Lamb-Oseen
vortex showed the least robustness to the spatial noise, where the errors of pressure go up to 70%
for heavy noise, and 50% for medium noise. Taylor-Green vortex and Burgers’ vortex are generally
more robust even in the heavy noise, the errors of pressure rise to 14% for the Taylor-Green vortex
and only 8% for the Burgers’ vortex.

(a) (b) (c)

(d) Taylor-Green (e) Lamb-Oseen (f) Burgers’

Figure 12.19: Pressure field reconstruction results for different noise levels in spatial coordinates.
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12.5 Test on turbulent flow
The proposed framework is also tested using a turbulent flow database (Bappy, M.H, 2025) with
the large-eddy simulation (LES) method. The problem aims to simulate a twin-vortex problem
where the two vortices are interacting with each other. The data is organized as multiple 2D slices
in the y− z plane, from 1 to 20 at an axial distance of 0.01 in the x direction. The time step size
is 0.005 time units. The kinematic viscosity is 1e-6, and the reference velocity is 10m/s, length
of 0.167m, density of 1000kg/m3, which results in a Reynolds number of 1.67×106. The training
data samples the velocities with a down-sample size of 1/20 while the full-size data are used as the
validation data. We aim to reconstruct the full-size flow field, assimilating the pressure field, from
the sparse training data.

The results are shown in Figure 12.20 as an overview of the entire flow field reconstruction
results in comparison to the ground truth, the LES simulation data. It can be seen that the overall
results appear close to the LES simulation results. The entire flow fields reconstructed by the
PINN model mainly capture the overall patterns of the turbulent flow and also the locations of
the twin-vortex as indicated in the pressure field. To further compare the detailed results, the
comparisons of the 2D slice of the flow field in the y− z plane are presented in Figure 12.21. The
left side of each subfigure shows the ground truth from the LES simulation, the middle column is
the result predicted by the PINN model, and the right side is the sampled data for training at the
corresponding slice. The pressure values in training data are set to zero to avoid any data leakage.

(a) u field (b) v field

(c) w field (d) p field

Figure 12.20: Flow field reconstruction results for twin-vortex problem.

Error in u Error in v Error in w Error in p min p prediction/truth

23.43% 4.83% 5.08% 1.65% -0.525/0.612

Table 12.5: Summary of the flow field reconstruction for twin-vortex simulation.

The flow fields reconstructed by the PINN model are generally smoother than the LES results,
especially for the velocity field. The L2 error of the entire flow field over the entire simulation time
is computed and summarized in Table 12.5. The minimum pressure obtained in the prediction is
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(a) u slice

(b) v slice

(c) w slice

(d) p slice

Figure 12.21: Comparison of the results in 2D slice, LES (left), PINNs (middle), sample (right).

0.525, which is slightly higher than the LES results, 0.612. Although the error in the u velocity
field has a larger error, the other three fields have very small errors, especially for the pressure
field with a relative error as low as 1.65%. A possible reason that the u velocity has a higher error
could be that the density of the particles in the x direction is also much lower than in the other
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two directions.

12.6 Conclusion and future work
This work demonstrates the capability of machine learning methods—in particular, Physics-Informed
Neural Networks (PINNs)—to reconstruct fine-resolution flow fields from sparse particle measure-
ments. Using several analytical vortex models in both 2D and 3D as test cases, the study sys-
tematically evaluated the performance of the proposed method in reconstructing both velocity and
pressure fields and obtaining the location and value of the minimum pressure from limited and
noisy PTV data.

The results show that the PINN model can accurately reconstruct flow fields, even with an ob-
servation rate of less than 1%. For the Taylor-Green and Burgers’ vortex models, the reconstructed
velocity and pressure fields closely match the reference ground truth, including accurate identifica-
tion of the minimum pressure—a key parameter for understanding cavitation inception in marine
applications. Although the Lamb-Oseen vortex case exhibited slightly higher errors, particularly
for pressure prediction, these errors remain within an acceptable range, demonstrating the robust-
ness of the approach across diverse flow scenarios. The investigation into sample distribution and
noise effects further highlights the strengths and limitations of PINN-based flow reconstruction.
Higher particle density and a uniform spatial distribution generally improved reconstruction accu-
racy, particularly in the pressure field. The model also exhibits notable resilience to measurement
noise: the velocity fields remain accurately predicted even under significant noise, and the pressure
field, especially the minimum pressure value, is predicted with acceptable uncertainty.

Overall, this study provides valuable insights and a solid foundation for further development in
data-driven flow field reconstruction and pressure estimation with physics-informed machine learn-
ing tools. Future work will focus on extending the methodology to more complex and unsteady
vortex dynamics, refining noise quantification and uncertainty analysis, and ultimately, applica-
tion to real-world experimental PTV measurement data. This will further strengthen the bridge
between sparse experimental observations and high-fidelity flow field information, with important
implications for the study of cavitation inception and broader fluid dynamics applications.
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Optimizing Hydrofoil using Gradient-Based and
Deep Reinforcement Learning Approach

Mohamed A. S. Abdul-Kaiyoom & Joaquim R. R. A. Martins

We consider gradient-based and machine learning-based optimizations for optimizing hy-
drofoils. In gradient-based cases, we explore different objective functions for single-point
optimizations and their effect on the optimal design. We also perform multipoint optimiza-
tion to optimize the hydrofoil, which encounters different inflow angle of attack values. To
perform gradient-based hydrofoil optimization, we require an efficient CFD solver with ana-
lytical derivatives. However, many multiphase solvers do not have these features. Therefore,
machine-learning based optimization seems to be a promising alternative to gradient-based
optimization. Therefore, we develop a deep reinforcement learning framework to perform
hydrofoil optimization.

Keywords: hydrofoil optimization, deep reinforcement learning

13.1 Introduction
Hydrofoil design optimization represents a critical component in modern fluid dynamics applica-
tions, where efficiency, performance, and reliability are paramount. As industrial and research
applications increasingly demand better performance in fluid-interacting designs, the need for com-
prehensive analysis and optimization of hydrofoil designs becomes important. Hydrofoil shape
optimization is crucial in the early design stage of the design to find an optimal design that satisfies
several lift, cavitation, and geometric constraints. Therefore, we perform several gradient-based
hydrofoil optimizations to understand the design trends and develop a machine-learning based
framework for effective design optimization.

Hydrofoil design optimization requires a computational fluid dynamics (CFD) model with appro-
priate fidelity that captures viscous effects, such as the Reynolds-averaged Navier-Stokes (RANS)
equations. RANS-based design optimization has been applied extensively to the design of air-
craft (He et al., 2019; Mangano and Martins, 2021; Abdul-Kaiyoom et al., 2023a,b), wind tur-
bines (Dhert et al., 2017; Madsen et al., 2019), turbomachinery (Briones et al., 2020; Pátý and
Lavagnoli, 2018) and watercraft (Garg et al., 2017; Ploe, 2018). Numerical optimization techniques
in hydrofoil design have traditionally focused on minimizing drag while satisfying a given lift con-
straint and cavitation constraints. Cavitation is a major concern in the hydrodynamic designs
because it can degrade the performance and cause structural failure. Therefore, eliminating cav-
itation is critical in the optimal design. This report presents a detailed examination of hydrofoil
optimization, where we focus on optimizing the hydrofoil for different lift constraints with cavitation
constraints and performance metrics that directly impact design effectiveness.

Although the above cases utilize gradient-based optimizations to efficiently find an optimal
design, machine-learning has been widely used in many airfoil shape optimization (Du et al., 2021;
Bouhlel et al., 2020; Dussauge et al., 2023). Machine-learning based optimizations can explore a
wide range of design spaces and are more flexible in using a wide range of CFD solvers. Thus,
we also develop a machine-learning based framework for effective hydrofoil design optimization
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Figure 13.1: FFD parameterization for Eppler 817 hydrofoil. The red points are the FFD control points.

to incorporate CFD solvers that are not equipped with gradients. This framework will facilitate
effective design optimization with multiphase solvers in the future. In this framework, we use a deep
reinforcement learning (DRL) based approach to optimize hydrofoil designs. In DRL, the agent
identifies the best course of action to take with the environment and maximizes the cumulative
reward function. Using this approach, Dussauge et al. (2023) demonstrated that the DRL method
reveals increased efficiency in exploring the design space and successfully converges on airfoils that
exhibit improved performance compared to the traditional approach. Thus, DRL based hydrofoil
optimization is a potential approach for future design optimization.

The remainder of the report is structured as follows. Section 13.2 explains the methodology
used for addressing the hydrodynamic design optimization. Section 13.3 details the optimization
problems solved in this study. In Sec. 13.4, we present and discuss the results of the traditional
optimization problem and the features of the ongoing DRL framework. Finally, the conclusions are
presented in Sec. 13.5.

13.2 Methodology

For traditional and DRL based optimizations, we use the OpenMDAO framework (Gray et al.,
2019), which enables a flexible component-based architecture. In these optimizations, the primary
CFD solver is ADflow 1 (Mader et al., 2020), which solves the RANS equations on structured
multiblock and overset grids. We use the Spalart–Allmaras (SA) turbulence model (Spalart and
Allmaras, 1992) in all the results. ADflow also uses a robust approximate Newton–Krylov solver
algorithm (Yildirim et al., 2019) and an efficient adjoint solver to compute the derivatives required
for gradient-based optimization (Kenway et al., 2019). Besides ADflow, pyHyp2 (Secco et al., 2021),
a grid generation package, is used for generating volume meshes. pyGeo3 (Kenway et al., 2010)
updates the geometry model and IDWarp4 (Secco et al., 2021) warps the volume mesh. pyGeo
offers several parameterization techniques. In this work, the airfoil shape is parameterized using a
free-form deformation (FFD) approach (Sederberg and Parry, 1986), as shown in Figure 13.1.

1https://github.com/mdolab/adflow
2https://github.com/mdolab/pyhyp
3https://github.com/mdolab/pygeo
4https://github.com/mdolab/idwarp
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Re,T ,V

Optimizer xshape α

ggeo Geometry Surface Mesh

Mesh Warping Volume Mesh

Cl , Cd , Cp,min ADflow

Figure 13.2: XDSM diagram for the hydrofoil optimization.
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Figure 13.3: DRL framework that is coupled with OpenMDAO components.

For gradient-based optimization, within pyOptSparse, we use the sparse nonlinear optimizer
(SNOPT) (Gill et al., 2002), a sequential quadratic programming (SQP) algorithm. SNOPT can
solve large-scale nonlinear optimization problems. The finite difference method is the most common
method for calculating derivatives for gradient-based calculations. However, finite differences scale
poorly with the number of design variables and are subject to significant numerical errors (Martins
and Ning, 2022, Sec. 6.4). The adjoint method is the most cost-effective approach in this case
because its computational cost does not depend on the number of design variables (Martins and
Ning, 2022, Sec. 6.7).

Figure 13.2 shows the eXtended Design Structure Matrix (XDSM) diagram of the hydrofoil
optimization. In the gradient-based optimization, the optimizer feeds pyGeo the new design vari-
ables at each iteration, updating the geometry model and related CFD surface mesh. IDWarp
then updates the volume mesh through the volume mesh warping module. Then, the ADflow is
converged using the robust approximate Newton–Krylov solver algorithm (Yildirim et al., 2019).
ADflow also computes the adjoint derivatives of the modified mesh. The function and derivative
evaluations are passed into the optimizer for the next update.

For DRL based optimization, we develop a DRL framework, which uses the Stable Baselines
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package in Python and is coupled with the OpenMDAO framework to observe, modify, and calculate
the reward functions. Figure 13.3 shows this DRL framework, which has been developed recently.
The DRL agent observes the current FFD control point positions and takes an action to modify the
shape by moving the FFD control points. Then, we pass these new FFD control point positions to
pyGeo to update the geometry and update the volume mesh using IDWarp. Following that, we run
aerodynamic analysis using the ADflow on the updated volume mesh and collect the performance
metrics such as lift coefficient (Cl), drag coefficient (Cd), and minimum pressure coefficient (Cp, min).
These performance metrics are used to compute the reward function, which gives an agent numerical
feedback and guides it towards learning beneficial behaviors by gradually increasing the total reward
value. In deep reinforcement learning, the reward function is a mathematical function that gives
an agent scalar feedback regarding the quality of its actions. It is the main learning feedback that
directs the agent to perform desired actions. In this research, we provide a positive value when the
constraints are met and a negative value when the constraints are violated. This iterative process
continues to maximize the cumulative reward function.

13.3 Problem formulation

In general, we minimize Cd with respect to the angle of attack and shape design variables while
satisfying a set of constraints. The geometric constraint functions involve the hydrofoil’s thickness
(t), curvature (k), and LE radius (R).

Function/Variable Description Quantity

Minimize Cd

Or
Maximize Cl/Cd

By varying xshape Shape design variables 20
α Angle of attack 1

Subject to Cl = 0.2 Lift coefficient 1
0.8t0 ≤ t≤ 1.5t0 Thickness constraint 200
0.8k0 ≤ k ≤ 4.0k0 Curvature constraint 2
0.8R0 ≤R≤ 2.5R0 LE radius constraint 1
Cp, min ≥−0.5 cavitation constraint 1

Table 13.1: The single-point hydrofoil optimization problem formulation.

We use three different baseline designs. The first baseline is the Eppler 817 hydrofoil because
several studies have investigated its cavitation development (Astolfi et al., 1999; Amromin, 2001).
Therefore, we perform hydrodynamic shape optimization to optimize the baseline shape by remov-
ing the cavitation. For removing the cavitation, we use a cavitation model in ADflow, where we
find the minimum Cp over the hydrofoil surface and constrain it. This constraint is computed by
applying KS aggregation (Kreisselmeier and Steinhauser, 1979) to the Cp values computed at each
location, which gives a smooth and differentiable approximation of the minimum Cp,
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Cp,min = KS
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(
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) , (13.1)

where Cp,i are the coefficient of pressure values over the surface, N is the number of Cp over the
surface, and ρ is KS weight parameter. This cavitation model has been used successfully to alleviate
cavitation in several cases (Liao et al., 2021; Ng et al., 2025).

Table 13.1 shows the optimization problem formulation for the single-point optimization cases.
In the first case, we minimize the Cd subject to the constraints. In the second case, to achieve a
maximum hydrodynamic efficient foil, we also perform an optimization to maximize L/D with the
same set of constraints. We compare these two cases in Section 13.4.

The second baseline is NACA 66 for propeller designs because it has been used in the KP 505
benchmark propeller. We are interested in studying the multipoint optimization for this baseline
because the propeller encounters different inflow angles of attack. Table 13.2 shows the problem
formulation for this case. Therefore, we formulate a multipoint optimization to minimize the drag
at different angles of attack values. We consider three points for this problem. The center point
has an angle of attack (α) design variable, and the other two points have an angle of attack of
α− 1 degrees and α+ 1 degrees, respectively. In this formulation, the optimizer explores various
inflow angles for the optimal design and achieves a better performance. We also enforce cavitation
constraint on all three points using Eq. 13.1.

Function/Variable Description Quantity

Minimize Cd, α−1 +Cd +Cd, α+1

By varying xshape Shape design variables 20
α Angle of attack 1

Subject to Cl = 0.2 Center point Lift coefficient 1
Cp, min ≥−0.5 Cavitation constraint for all three points 1
0.8t0 ≤ t≤ 1.5t0 Thickness constraint 200
0.8k0 ≤ k ≤ 4.0k0 Curvature constraint 2
0.8R0 ≤R≤ 2.5R0 LE radius constraint 1

Table 13.2: The multipoint hydrofoil optimization problem formulation.

The third baseline is the RAE 2822 airfoil. We use this baseline because it has been used in
several airfoil optimizations (Du et al., 2021; He et al., 2019). We are interested in testing our
DRL framework with the well-known baseline design. We will first perform transonic airfoil shape
optimization using our DRL framework to validate the results with the gradient-based optimiza-
tion. This will guarantee that the DLR-based optimization is comparable with the gradient-based
optimization. Table 13.3 shows the problem formulation for this case.

The Reynolds number for the single-point and multipoint hydrofoil cases is 2× 10−6, and the
Mach number is 0.18. In the airfoil optimization, the Mach number is 0.8 and the altitude is 10,000
meters.
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Function/Variable Description Quantity

Minimize Cd

By varying xshape Shape design variables 20
α Angle of attack 1

Subject to Cl = 0.2 Lift coefficient 1
0.8t0 ≤ t≤ 1.5t0 Thickness constraint 200
0.25k0 ≤ k ≤ 3.5k0 Curvature constraint 2

Table 13.3: The single-point airfoil optimization problem formulation.

13.4 Results

Gradient-based hydrofoil optimization

We first perform several single-point optimizations in this section to optimize the hydrofoil for the
given problem formulation in Table 13.1. For the drag-minimized problem, we chose five different
target lift values. For this case, the maximum target lift value we were able to optimize was 0.6.
For the Cl/Cd maximized problem, we remove the lift constraint. The rest of the constraints in
this case are identical to the drag-minimized problem.

Figure 13.4 shows the optimal hydrofoil shapes for the problem formulation in Table 13.1.
When the target lift value increases in the drag-minimized problem, the optimal design achieves
higher camber. On the upper surface of the hydrofoil, the pressure also decreases. Thanks to the
cavitation constraint, the optimizer limits the optimal design to fall below the constrained Cp value.
We notice a flattening pressure value over the upper surface due to the cavitation constraint. As
the camber increases due to the higher target lift value, more of the optimal design upper surface
has a constant pressure value. Similarly, the Cl/Cd maximized case also achieves a high cambered
hydrofoil design. This design also has a constant pressure value over the upper surface because of
the cavitation constraint.

Figure 13.5 shows the Cl vs Cd plot for all the cases in Table 13.1. When the target lift value
increases, the optimal drag value also increases. The Cl/Cd maximized have the largest Cl and
Cd value. Figure 13.6 shows the polar study for the drag-minimized and Cl/Cd maximized cases.
Each optimal point has lower drag in its polar plot. These results show the important trends of
optimizing the hydrofoil using two different ways: minimizing drag and maximizing Cl/Cd. Both
of these cases satisfy the constraint and achieve different optimal designs.

Following that, we perform a multipoint optimization for the problem detailed in Table 13.2.
The ship propellers encounter different inflow angles of attack because of the wake from the ship
hull. Therefore, we consider these variations in the optimization problem to optimize the baseline
design. We also perform a single-point optimization to show the importance of this multipoint
optimization.

Figure 13.7 shows the multipoint optimal design and Cp plots. We also show the single-point
optimal design for comparison. Both of these cases achieve different optimal designs. The optimal α
for single-point and multipoint optimizations are 0.42 and 0.63, respectively. The optimizer changes
the multipoint optimal design significantly to reduce the drag across all three points and satisfy the
constraints. The single-point optimal design violates the cavitation constraint at the α+ 1 point
because this point was not considered in the problem formulation. This performance degradation
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Figure 13.4: Optimal shapes for the drag minimized and Cl/Cd maximized problem.

is known in single-point optimizations. However, the multipoint optimal design satisfies all the
constraints, including the cavitation constraint across all the points.

Figure 13.8 shows the α vs Cl and α vs Cd plots. For a given α, the multipoint design achieves a
larger Cl compared to the single-point design because it has a higher camber. However, it achieves
a larger drag compared to the single-point optimal design. Nevertheless, the multipoint optimal
design satisfies the cavitation by penalizing the drag. Therefore, multipoint optimizations are
crucial for designs that experience different inflow angles of attack values.

DRL-based hydrofoil optimization

The policy network in the DRL algorithm needs to observe the environment and take actions
to optimize the design. As explained in Sec. 13.2, the environment in the DRL framework is
the OpenMDAO group, which contains pyGeo, IDWarp, and ADflow components. Reinforcement
learning is distinct from other machine learning techniques. Instead of using a fixed dataset as in
supervised learning, the agent in reinforcement learning itself gathers the data for training through
interactions with the environment. We want to optimize the airfoil problem detailed in Table 13.3.
Therefore, the DRL agent is first trained using the environment to map from states, which are
design variables, lift coefficient, drag coefficient, and geometric constraints, to actions, where the
agent updates the design variables. This mapping process is done internally in the DRL agent
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Figure 13.5: Cl vs Cd plot for the problem in Table 13.1.
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Figure 13.6: Drag polar for the problem in Table 13.1.

to take actions. In this way, the DRL agent interacts with the environment and learn about the
quality of its actions. The DRL reward function reflects the quality of action taken by the agent.
The reward function contains the objective function (drag coefficient) and the constraints (lift and
geometric constraints). When the drag decreases, the reward function value increases. Similarly,
when the constraints are met, the reward function value increases as described in Sec. 13.2. In
this way, the DRL agent finds the optimal design. During the training process, the agent observes
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Figure 13.7: The single-point and multipoint optimal designs.

and takes action to learn the design space by updating the angle of attack and FFD control point
positions. The updated hydrofoil shape for the given action is required to be a valid shape to run
the CFD simulation to get the performance metrics. The CFD simulation frequently fails because
these shapes have negative volume cells and are therefore invalid. To overcome these difficulties, we
enforce thickness and curvature constraints at each iteration. At the beginning of training, we first
compute the initial thickness (t0) using pyGeo for enforcing the relative thickness at each iteration
(left figure in Figure 13.9). The thickness corrections are made in the following steps:

1. At each iteration, we compute the thickness ti (right figure in Figure 13.9) to check if the
relative thickness ti/t0 violates its bounds.

2. If the relative thickness violates the bounds, we move the upper FFD (FFDupper) and lower
FFD (FFDlower) control point positions by the required amount to satisfy the constraints,

if ti/t0 < tlower,

FFDupper+ =
∣∣FFDupper

∣∣× (tlower− ti/t0), FFDlower−= |FFDlower|× (tlower− ti/t0);
if ti/t0 > tupper,

FFDupper+ =
∣∣FFDupper

∣∣× (tupper− ti/t0), FFDlower−= |FFDlower|× (tupper− ti/t0),

where tlower and tupper are lower and upper bounds for the relative thickness, respectively.
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Figure 13.8: Polar study for the optimal designs.
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Figure 13.9: Enforcing thickness and curvature constraints at each iteration. The orange points are the FFD control
points. The airfoil shape change is shown in this figure. The blue line shows the initial thickness and the red line
shows the thickness at the ith iteration.

3. Following that, we check the curvature of the FFD control point positions. High curvature
FFD control point variation leads to relatively less smooth shapes that are difficult to con-
verge. Figure 13.10 shows how the high curvature point is corrected to get a relatively smooth
curve. We remove the high curvature FFD control point and interpolate with the rest of the
FFD control point positions to find the new FFD control point position for the high curva-
ture FFD control point. We use the PCHIP interpolate function in python, monotonic cubic
splines, to find the value of new points to eliminate high curvature points.

4. We then repeat step 3 to enforce the thickness constraint again to satisfy them. Figure 13.11
shows how the bad shape is turned into a valid shape by enforcing thickness and curvature
constraints.

5. Finally, we update the volume mesh and run the CFD simulation.

We calculate how much the FFD control point positions need to be changed based on the
required thickness and curvature changes to satisfy their bounds. After we update the new FFD
control point positions, IDWarp warps the volume mesh. Following that, ADflow runs the CFD
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Figure 13.10: Removing high curvature point and interpolating to find new points.

Figure 13.11: Before and after enforcing thickness and curvature constraints at each iteration.

analysis and provides the performance metrics. This training process is carried out for a number
of iterations. The policy network in DRL learns from the trained dataset. After training, the DRL
agent will optimize the baseline. However, at this stage, we are exploring more robust options to
train the environment and get practical shapes. After training, we will explore the optimization
part. In the next process, we will explore the options to tune hyperparameters for optimal training
and performance.

209



References

13.5 Conclusions
Hydrofoil optimizations are crucial for naval designs. As a result, we perform several gradient-
based hydrofoil optimizations to understand the design trends and develop a machine-learning
based framework for effective design optimization.

In the gradient-based optimizations, we show the optimal design differences between minimizing
the drag and maximizing the lift over drag ratio. The latter case achieves higher drag and lift values
to maximize the lift-to-drag ratio. Both of these cases satisfy the cavitation constraints, where we
noticed a flattening pressure value over the upper surface. Furthermore, we also perform multipoint
optimization to effectively optimize the different inflow angles of the attack case. We also perform
a single-point optimization to compare it to the multipoint optimization. The multipoint case
successfully satisfies the cavitation constraint across all the points, while the single-point case
violates the cavitation constraint at the high inflow angle of attack point. These results show the
importance of the multipoint optimization in hydrofoil optimization.

Finally, we develop a deep reinforcement learning (DRL) based framework for hydrofoil opti-
mization. Currently, we are developing geometric constraint functions to obtain valid shapes for
training. We are also exploring tuning the hyperparameter for optimal performance.
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Adjoint-Based Assimilation of External Data with
High-Fidelity Simulations of Complex Flows

Gao Jun Wu, Sreevatsa Anantharamu1 & Krishnan Mahesh

This work introduces an adjoint-based data assimilation algorithm that integrates high-
fidelity flow simulations with external velocity data. The external data sources include
theoretical solutions, numerical simulations from other flow solvers and experimental mea-
surements. The algorithm finds a numerical solution to the incompressible Navier-Stokes
equations that best matches the external velocity data. It distinguishes itself from other
adjoint-based assimilation methods in two ways. Firstly, the modeled solution is obtained
using a high-order, non-dissipative Hybridizable Discontinuous Galerkin (HDG) scheme
on unstructured meshes (Anantharamu and Mahesh, 2024). Secondly, beyond optimizing
the unknown initial condition of the incompressible Navier-Stokes (N-S) equations, the as-
similation also optimizes unknown time-varying inflow/outflow boundary conditions. The
objective function is defined as the sum of squared differences between the numerical solu-
tions and external data, with the discretized N-S equations imposed as equality constraints
through Lagrange multipliers. Using the adjoint of the discrete system, the optimization
problem is solved iteratively with the quasi-Newton method. The algorithm has been im-
plemented both in MATLAB for small test cases and in parallel for large flow problems on
high-performance computing (HPC) systems. Various canonical test cases are presented to
highlight the key features of the algorithm, followed by a discussion of the computational
cost.

Keywords: data assimilation, HDG, adjoint

14.1 Introduction

Experiments, analytical and numerical solutions of fluid dynamic systems are typically viewed as
distinct data sources that need to be combined for cross-validation or complementary insights. By
directly injecting existing data into a high-fidelity complex-geometry Navier-Stokes (N-S) solver,
we develop a framework that finds the best-matching simulation to observations or theory. This
approach has the potential to enhance both the accuracy and efficiency of simulations, as well as
improve measurement techniques for quantities that are currently challenging to obtain.

Specifically, this work introduces an adjoint-based data assimilation algorithm that assimilates
external time-varying velocity data with a numerical solution to the incompressible N-S equations.
The external samples of velocity can be obtained in an Eulerian or Lagrangian frame of reference,
allowing the algorithm to be applied to data from various measurement sources such as hot wires,
particle image velocimetry (PIV), and particle tracking velocimetry (PTV), etc. As illustrated by
Figure 14.1, given a set of coarse velocity samples inside a control volume (marked as gray dots), the
algorithm solves a minimization problem for the L2 norm of velocity difference between numerical
simulations and external data. The independent parameters to be optimized are the unknown

1University of Minnesota, Minneapolis, MN
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initial and boundary conditions of velocity. The mass and momentum conservation laws governed
by the incompressible N-S equations are included as equality constraints of the optimization. By
optimizing the initial and boundary conditions given to the N-S solver, the algorithm finds a
simulated velocity field that best matches the given external data and reconstructs non-measured
quantities such as pressure and vorticity.

Figure 14.1: Schematic of the data assimilation problem.

Firmly grounded in numerical analysis and the first principles of non-linear flow physics, the
current data assimilation algorithm distinguishes itself from other adjoint-based methods in two
ways. Firstly, the modeled solution is obtained using a high-order, non-dissipative numerical scheme
on unstructured meshes. This enables flexible and adaptive mesh designs around complex geome-
tries tailored to the flow configuration and sample distribution. Secondly, beyond optimizing the
unknown initial condition of the flow field, the algorithm also optimizes unknown time-varying
inflow/outflow boundary conditions. This would allow for the data assimilation domain to follow
Lagrangian particles in space and time.

The remainder of the report is organized as follows. Section 14.2 summarizes the assimilation
algorithm; section 14.3 presents a few canonical test cases where synthetic PIV or PTV sample data
are used to showcase various capabilities of the algorithm; section 14.4 discusses the computational
cost of the algorithm, followed by conclusions and future work in section 14.5.

14.2 Methods

Overview of the assimilation algorithm
Figure 14.2 shows the data assimilation algorithm as an iterative process of finding the optimal
initial and boundary conditions for the N-S solver. At the start of the process, an initial guess on
the initial and boundary conditions for the velocity field is generated based on interpolating the
available sample data. This initial guess is then fed into the numerical solver, and the resulting
velocity solutions are compared with the external velocity data. The differences between the data
become the forcing in the adjoint momentum equation. The adjoint equation is solved backward in
time and gives the most sensitive direction in perturbing the initial and boundary conditions that
will lead to a decrease in velocity differences. With the adjoint solution, the quasi-Newton method
is then used to systematically determine a search direction and a step size to update the initial and
boundary conditions. With the newly updated conditions, a new iteration will start. This iterative
process proceeds until a local minimum of the objective function is found. As part of the numerical
solution, this process also finds quantities such as pressure and vorticity that are consistent with
the assimilated velocity field.
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Figure 14.2: Schematic of the assimilation algorithm.

HDG numerical scheme

The Hybridizable Discontinuous Galerkin (HDG) method is used to solve the incompressible Navier-
Stokes equations. Full details of the method are presented in Anantharamu and Mahesh (2024).
The computational domain is discretized by unstructured tetrahedral cells. The algorithm seeks a
numerical solution for the velocity gradient L and velocity u in each cell K, as well as pressure p
and the hybridized velocity û, defined only on the faces of the discretized domain, that satisfy

(L,G)K +(u,∇·G)K = ⟨u,Gn⟩∂K , (14.1)(
∂u
∂t
,v
)

K

− (u⊗u,∇v)K +
〈
(û ·n)û,v

〉
∂K =−(∇·νL,v)K + ⟨p,v ·n⟩∂K +(f,v)K , (14.2)

⟨u ·n, q⟩∂K = ⟨û ·n, q⟩∂K , (14.3)

where (w1,w2)K and ⟨w1,w2⟩F are short hand notations for volume and surface integrals of inte-
grand w1 ·w2 in a volume K and a face F respectively. ∂K refers to the set of bounding faces of
the element K. G,v, q are test functions in the finite dimensional functional spaces that guarantee
well-posedness of the weak formulation (see Anantharamu and Mahesh (2024) for detailed defini-
tions). The solution space to approximate u and its test function space are spanned by element-wise
divergence free polynomial basis functions. This means the incompressibility condition is satisfied
by construction inside K. The solutions for all subdomains K⊕∂K are then stitched together via
the face conditions. For each face F in the discretized computational domain,


∑

K∈K+,K−
〈
(νL−pI)n,µ

〉
F = 0, if F ∈ FI ,〈

(νL−pI)n,µ
〉

F =−⟨p∞n,µ⟩F , if F ∈ FO,

⟨û,µ⟩F = ⟨uD,µ⟩F , if F ∈ FD,

(14.4)

where FI ,FO,FD denote the set of interior, farfield outflow and Dirichlet boundary (for velocity)
faces. For numerical stability, the momentum flux term on the faces, (û ·n)û in Eqn. 14.2, is
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approximated by

(û ·n)û≈


(û ·n)

(
1
2(u−

T +u+
T )+(û ·n)n

)
, if F ∈ FI ,

(û ·n)u, if F ∈ FO,

(û ·n)
(
H(û ·n)u +H(−û ·n)û

)
, if F ∈ FD,

(14.5)

where u±
T is the tangential velocity inside cells that share the interior face F ∈ FI . H denotes the

Heaviside step function. The equations are advanced in time using the 2nd-order Adams-Bashforth
scheme for the convective terms and the implicit midpoint scheme for the viscous terms.

Adjoint of the HDG system
The adjoint equations to the discretized N-S system is used to ensure the numerical consistency
between the gradient evaluation and the objective function evaluation. In each element, the adjoint
velocity gradient L†

h, the adjoint velocity u†
h and the adjoint pressure p†

h,0 are governed by,

(
L†n

h ,G
)

K
+ 1

2

(
u†n− 1

2
h +u†n+ 1

2
h ,∇·G

)
K

=
〈

û†n,Gn
〉

∂K\FD
, (14.6)

1
∆t

(
u†n− 1

2
h −u†n+ 1

2
h ,vh

)
K

−
(
∇·νL†n

h ,vh

)
K

+
〈
p†n

h,0,vh ·n
〉

∂K
+C.T.n

=
Pk∑
i=1

(
un

h(xi
(K))−gn

h(xi
(K))

)
·vh(x(K)

i ),
(14.7)

where C.T.n is the nonlinear adjoint convective terms at time n, expressed in full detail in the
appendix. Equation 14.7 shows that the differences between the simulated velocity and the sample
velocity, un

h(xi
(K))−gn

h(xi
(K)), summed over all the sample locations inside each element, becomes

an effective impulse forcing term for the adjoint momentum evolution. Further, we have

1
2

〈
(u†n− 1

2
h +u†n+ 1

2
h ) ·n, qh,0

〉
∂K

=
〈
û†n ·n, qh,0

〉
∂K\FD

, (14.8)

〈
û†n ·n,1

〉
∂K\FD

= 0. (14.9)

Over the faces F, we have
∑

K∈{K−,K+}

〈(
νL†n

h − (p†n
h,0 + p̄†n

h,∂K)I
)

n,µµµh

〉
F

= 0, ∀F ∈ FI, (14.10)
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F

, ∀F ∈ FD.

(14.12)

This set of equations is solved with the same algorithm as described by the original HDG
algorithm. With the obtained adjoint solutions, the gradients of the objective function with respect
to the initial and boundary conditions can be computed.
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The Fréchet derivative with respect to the initial condition is, for each element K,(
δL
δu0

h

,vh

)
K

=
(

u† 1
2

h ,vh

)
K

+ ∆t
2

(
ν(∇·L† 1

2
h ),vh

)
K

−∆t
2

〈
p

† 1
2

h,0,vh ·n
〉

∂K
−∆tC.T0,

(14.13)

where C.T0 is the contribution from the nonlinear convective term at time 0.
The Fréchet derivative with respect to the Dirichlet boundary condition is, for each F ∈ FD〈

δL
δûn

h

,µµµh

〉
F

=−∆t
〈(
νL†n

h − (p†n
h,0 + p̄†n

h,∂K)I
)

n,µµµh

〉
F
−∆tC.T.B.C.n, (14.14)

where n varies from 1 to N , and C.T.B.C.n is the contribution from the nonlinear convective term
at time n with full details given in the appendix. Lastly, at the time step 0,〈

δL
δû0

h

,µµµh

〉
F

=−1
2∆t

〈(
νL† 1

2
h − (p† 1

2
h,0 + p̄

† 1
2

h,∂K)I
)

n,µµµh

〉
F

−∆tC.T.B.C.0. (14.15)

These Fréchet derivatives are then used by the quasi-Newton solver to solve the optimization
problem for the unknown initial and boundary conditions of the assimilated flow system.

Pressure reconstruction from assimilated velocity field

To obtain the full pressure field, some extension to the original formulation (Anantharamu and
Mahesh, 2024) is required. Recall the momentum equation of the HDG method starts with the
weak form (

∂uh

∂t
,vh

)
K

− (∇·νLh,vh)K +(∇ph,vh)K = (gh,vh)K . (14.16)

Applying the divergence theorem,(
∂uh

∂t
,vh

)
K

− (∇·νLh,vh)K + ⟨ph,vh ·n⟩∂K − (ph,∇·vh)K = (gh,vh)K , (14.17)

and using ∇·vh = 0, the equation reduces to(
∂uh

∂t
,vh

)
K

− (∇·νLh,vh)K + ⟨p,vh ·n⟩∂K = (gh,vh)K . (14.18)

Note that here we have absorbed the non-linear convective term into the body force term on the
right hand side by invoking the explicit time-stepping scheme and the numerical flux approximation
scheme on cell faces. Because the solution of elementary velocity field uh to the HDG equations
is expanded using divergence-free basis functions, ∇·vh = 0 by construction. As a result, p only
appears in the surface integral terms of the PDE system, therefore, the volumetric pressure field
inside each element becomes undefined. The approximated solution for p is defined only on the
faces of the discretized domain,

ph(∂K) = p̄h,∂K +ph,0. (14.19)
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The term p̄n
h,∂K is the non-zero average of the pressure over all faces of each element K, and

the second term is the zero average part

p̄h,∂K = 1
|∂K|

〈
ph(∂K),1

〉
∂K , (14.20)〈

ph,0,1
〉

∂K
= 0. (14.21)

Only the second term will appear in Eqn. 14.18, since the constant part will integrate to zero:

⟨p,vh ·n⟩∂K =
〈
p̄h,∂K ,vh ·n

〉
∂K

+
〈
ph,0,vh ·n

〉
∂K

= p̄h,∂K ⟨1,vh ·n⟩∂K +
〈
ph,0,vh ·n

〉
∂K

=
〈
ph,0,vh ·n

〉
∂K

.

To reconstruct the pressure inside each cell volume, denoted as pV
h , we need to retain the term

(p,∇·vh)K by extending the test functional space vh ∈SDF ⊕S⊥
DF . So the test function is composed

of a divergence-free and a curl-free portion, vh = vh
DF + vh

⊥. Substituting into Eqn. 14.17, we
have (

∂uh

∂t
,vh

DF

)
K

+
(
∂uh

∂t
,vh

⊥
)

K

−
(
∇·νLh,vh

DF
)

K
−
(
∇·νLh,vh

⊥
)

K

+⟨ph,vh
DF ·n⟩∂K + ⟨ph,vh

⊥ ·n⟩∂K −
(
pV

h ,∇·vh
⊥
)

K

=
(
gh,vh

DF
)

K
+
(
gh,vh

⊥
)

K
.

(14.22)

Subtracting this equation from Eqn. 14.18,(
∂uh
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,vh

⊥
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(
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⊥
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(
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)

K
. (14.23)

Because uh is also in the functional space SDF , the first term drops out. Upon rearranging, we
have (

pV
h ,∇·vh

⊥
)

K
=−

(
∇·νLh,vh

⊥
)

K
+ ⟨ph,vh

⊥ ·n⟩∂K −
(
gh,vh

⊥
)

K
. (14.24)

Note the second term on the right hand side requires the evaluation of ph along the bounding faces
of each cell, which is obtained from the original HDG formulation. In short, the original surface-
valued pressure solution becomes the boundary condition for the pressure reconstruction problem
in each element.

Parallel implementation of the algorithm
The computational cost of the data assimilation algorithm is determined by the numerical and
physical constraints imposed by the dimensionality of the unsteady non-linear flow dynamics. The
numerical cost for obtaining an accurate simulation to a flow field increases as the range of spatial
and temporal scales of the flow system increase. Additionally, if nonlinearity of the flow dynamics
leads to a chaotic system, the time horizon in which the adjoint solution can trace the flow dynamics
backward in time will be limited by the Lyapunov timescale. Therefore, a long temporal series of
chaotic flow data would need to be assimilated in multiple realizations of shorter time windows.

Given these numerical and physical considerations, an in-house parallel implementation of the
assimilation algorithm has been completed. We have also developed a right conditioned generalized
minimal residual (GMRES) scheme for the HDG global linear system, coupled with the Trilinos
library for its algebraic multigrid iterative solver.
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14.3 Results and discussions
We first present three small test cases to demonstrate the capabilities of the assimilation algorithm,
followed by a more complex test case involving a forced isotropic turbulent flow field. The first
three cases are presented to highlight three key features of the algorithm: the ability to assimilate
velocity field with unknown Dirichlet boundary conditions while enforcing mass and momentum
conservation, the ability to reconstruct non-sampled quantities such as pressure, and the ability
to handle PTV-like datasets. The last example is used to showcase large-scale flow assimilation
achieved by the parallel implementation of the algorithm.

2D convecting vortex
Figure 14.3 shows the first assimilation case for a 2D convecting vortex, described in Poinsot and
Lele (1992). At time 0 the vortex center is placed at the left inflow boundary of the domain, with
an analytical expression:

u= U0 + ∂ψ

∂x2
, v =− ∂ψ

∂x1
, ψ = C exp

(
−x

2 +y2

2R2
c

)
,

where C determines the vortex strength and Rc sets the vortex radius. As time advances, the vortex
will move into the domain with a convecting velocity U0 while its core vorticity decays slowly by
viscous dissipation. For the case presented, C = 1, U0 = 20, Rc =

√
2/4. Figure 14.3(a-c) shows a

temporal snapshot of the flow field considered as ground truth, obtained by time-advancing the N-S
equations at ∆t = 10−4 with ν = 10−2 for 30 time steps using the prescribed analytical boundary
condition.

The assimilation domain, mesh setup, and sampled points are shown in Figure 14.3(g). The
assimilation takes the sampled velocity data as input and seeks an optimal combination of initial
and time-varying boundary conditions that will yield a solution that minimizes its differences from
the sampled velocity. The assimilated results are plotted in Figure 14.3(b, d, f), in comparison to
the true fields shown in Figure 14.3(a, c, e). The RMS of the assimilation errors over each timestep
is presented in Figure 14.3(h). Without specifying the exact initial condition and the boundary
condition on the left inlet plane, the assimilation algorithm successfully finds the optimal conditions
to achieve a low assimilation error. With the assimilated solution, non-sampled quantities such as
vorticity can also be obtained accurately.

3D Beltrami flow
The second assimilation case is a 3D Beltrami flow field, given as an exact analytical solution to
the incompressible N-S equations with periodic boundary conditions in all three directions,

u= (sinz+cosy)e−νt, v = (sinx+cosz)e−νt, w = (siny+cosx)e−νt,

p=−(cosx siny+sinx cosz+sinz cosy)e−2νt.

This case highlights the algorithm’s ability to reconstruct pressure field based on purely velocity
data. For the assimilation, scattered velocity samples are provided to the assimilation using the
analytical solution. By optimizing the initial condition for velocity, the algorithm obtains a 3D
velocity field that closely matches the analytical solution, as seen in Figure 14.4. The velocity
field from the assimilated solution is compared with the ground truth on the plane z = π at one
specific time instant. Using the assimilated velocity solution, the pressure field can be reconstructed
accurately by solving Eqn. (14.24).
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(a) u, truth (b) u, assimilated

(c) v, truth (d) v, assimilated

(e) ωz , truth (f) ωz , reconstructed

(g) sample location (h) RMS error of velocity over time

Figure 14.3: Assimilation of a 2D convecting vortex, where the left Dirichlet boundary condition is unknown.

Sub-volume assimilation with 3D synthetic PTV data

The third case illustrates the usage of data from a Lagrangian frame of reference and the algorithm’s
potential to break down a larger flow domain into smaller subdomains for assimilation. The ground
truth is obtained by numerically solving the N-S equations initiated with 16 randomly oriented
Fourier modes in a 3D periodic box of length 2π. Scattered velocity data are then sampled in a
Lagrangian frame of reference within a subvolume of the periodic box. At time 0, 163 points are
randomly selected inside the subdomain at [π/2,3π/2]× [π/2,3π/2]× [π/2,3π/2]. The Lagrangian
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(a) u, truth (b) u, assimilated

(c) v, truth (d) v, assimilated

(e) w, truth (f) w, assimilated

(g) p, truth (h) p, reconstructed

Figure 14.4: Assimilation of a 3D Beltrami flowfield. Note that pressure is reconstructed as a result of the assimilated
velocity field.

pathlines are obtained by integrating the velocity over time from these initially selected locations.
All sampled pathlines are plotted in Figure 14.5(a), where the line color changes from yellow
to red as time increases. Figure 14.5(b) shows a zoom-in view of the pathlines in the region over
[3π/4,5π/4]× [3π/4,5π/4]× [3π/4,5π/4]. Using these PTV like samples, the assimilation algorithm
finds the optimal combination of initial condition and time-varying boundary conditions for the
smaller subdomain, bounded by the red box in Figure 14.5(c, e, g). The assimilated field shown in
Figure 14.5(d, f, h) closely resembles the ground truth data.

221



Adjoint-Based Assimilation of External Data with High-Fidelity Simulations of Complex Flows

(a) Sampled PTV pathlines (b) Zoom-in view of the pathlines

(c) u, truth (d) u, assimilated

(e) v, truth (f) v, assimilated

(g) w, truth (h) w, assimilated

Figure 14.5: Assimilation of a synthetic PTV data set from a 3D flow initiated with randomly oriented Fourier modes.
Red boxes show the boundaries of the assimilated domain.
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(a) u, truth (b) u, assimilated (c) error of u

(d) v, truth (e) v, assimilated (f) error of v

(g) w, truth (h) w, assimilated (i) error of w

(j) p, truth (k) p, reconstructed (l) error of p

Figure 14.6: Assimilation of a forced isotropic turbulent flow field. Sample obtained from the JHU turbulent
database (Li et al., 2008; Perlman et al., 2007).

Forced isotropic turbulence

The last test case involves a forced isotropic turbulent field in a periodic box. The parameters to
be optimized are the initial velocity condition. The ground truth data are sampled from a direct
numerical simulation (DNS) provided by the Johns Hopkins University Turbulence Database (Li
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et al., 2008; Perlman et al., 2007). The original DNS was conducted on a structured grid with 1024
points over a length of 2π in each dimension, while the data sample used for assimilation is collected
for 64 points along each dimension. At the same spatial sample locations, four time steps of data
are collected at an interval of 0.0001 eddy turnover time. With these samples as ground truth,
the algorithm conducted assimilation using an unstructured grid containing roughly 20 elements
per dimension and 3rd-order basis functions. Figure 14.6 compares the ground truth data and the
assimilated solution at the sampled location. The velocity and pressure fields are visualized on
the plane z = 1.5π for the last sampled time step. The results indicate the assimilation algorithm
successfully obtains the range of turbulent flow scales contained in the sample data. The error
plots, generated by computing the absolute value of the relative error between the assimilated field
and the truth field, indicate the error distribution in space is non-uniform and containing high
wavenumber components. Moreover, the error of pressure is much higher than that of velocity,
which is expected since the pressure solution is approximated with lower-order basis functions than
velocity. Figure 14.7 shows the change in RMS error of velocity, normalized by urms, over each
quasi-Newton iteration. Before the first quasi-Newton iteration, an initial guess on the element-
wise initial condition is obtained via a least-square fit to the sample data at the first sampled time.
The error starts off with a sharp dropoff from iteration 1 to 2, followed by a slower decay rate
afterwards. The assimilation results are quite satisfactory after 14 iterations, and further iterations
will drop the error to even smaller levels.

Figure 14.7: RMS error of velocity over each quasi-Newton iteration for the JHU turbulence case.

14.4 Computational cost of adjoint-based assimilation

The adjoint-based assimilation algorithm can be broken down into four main computational tasks:
basis generation, local solution, global system assembly and optimization. Basis generation refers
to the construction of basis functions used to approximate the discretized velocity and pressure
solutions. For each mesh element, the velocity basis is computed using a modified Arnoldi iteration
to generate the divergence-free and orthogonal polynomial functions locally. Local solution refers to
the stage where the local solution of the HDG equation is obtained; it is posed as a boundary value
problem for each single mesh element. Global system assembly is to assemble local solutions from
each element into a global left hand side (LHS) matrix, where the trace variables on the element
faces are coupled globally to enforce the stress continuity across elements and boundary conditions.
The last segment refers to the quasi-Newton iteration to solve the optimization problem for data
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assimilation. During each quasi-Newton iteration, a number of forward and adjoint evolutions of
the HDG global system of equations are computed.

The first three data assimilation test cases shown in Section 14.3 were computed using a serial
implementation in MATLAB running on a single PC, equipped with a 16-core Intel i7-13700 CPU
processor and 64GB RAM. Given the simplicity of these flow configurations, the algorithm com-
pleted the data assimilation within a few minutes. Figure 14.8 shows the computational time for
each of the four main computational tasks. The two most costly segments are local solution and
assimilation. The first three segments were only done once at the start of the assimilation, while
the last segment required multiple iterations of temporal evolutions.

The computational costs for the basis generation and local solution scale as O(Nep
2), where Ne

is the number of mesh elements and p being the spatial order. The size of the global LHS matrix
also scales as O(Nep

2), which sets the memory requirement of the algorithm. The computational
cost for the last segment scales as O(Nep

2NtNo), where Nt denotes the number of discretized time
steps over the temporal domain of the data assimilation problem and No denotes the number of
iterations required for the quasi-Newton method to reach a satisfactory solution.

Figure 14.8: Computational cost for the serial version of the assimilation algorithm on a small scale test problem.

The last data assimilation test case shown in Section 14.3 was performed using the MPI-based
parallel implementation in Fortran. The number of degrees of freedom (DOFs) for the optimization
is about two million, and the computation was conducted with two 96-core AMD EPYC 9654
CPUs over 48 physical hours on the Lighthouse supercomputing cluster. The detailed breakdown
of the computational cost, measured by physical time in unit of seconds, is plotted in Figure 14.9.
Comparing Figure 14.9(a) with Figure 14.8, it can be seen that the parallel implementation keeps
the cost scalable for the first three computational segments: basis generation, local solution and
global system assembly. However, for the assimilation phase, the cost increases by three orders
of magnitude. Figure 14.9(b) shows the computational time for each iteration step of the quasi-
Newton method during assimilation. After the fourth iteration, the computational time history
contains various spikes, which is a result of the line search algorithm embedded in the quasi-Newton
iteration performing multiple sweeps of forward and backward evolution of the HDG system. This
significantly increases the computational cost despite only obtaining a small reduction in the RMS.
error as seen in Figure 14.7. To improve the performance, additional tuning to dynamically adjust
the initial step size used in the line search is being explored.
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(a) Computational cost for each segment (b) Computational cost for each iteration of quasi-Newton

Figure 14.9: Computational cost for the parallel version of the assimilation algorithm for the JHU turbulence test
case.

14.5 Conclusions and future work
This work introduces a novel data assimilation algorithm for integrating unsteady high-fidelity sim-
ulations with external data generated by theory, numerical simulations, or experimental velocity
measurements. The algorithm is capable of minimizing velocity differences between the simulation
and the given data source, as well as reconstructing volumetric flow quantities, such as pressure
and vorticity, that are not provided in the external data. The demonstrated test cases have as-
sumed sample data to be in the form of PIV or PTV samples, but the method is not limited to
these measurement techniques and has the potential to incorporate mean flow data or hot wire
measurements.

The algorithm is constructed as a gradient-based optimization, with the sum of squared differ-
ences between simulated and external velocity data as the objective function. The free parameters
to be optimized are the initial and boundary conditions used as input to the numerical solver. The
discretized N-S equations are imposed as equality constraints through Lagrange multipliers. The
adjoint of the discretized system is solved to obtain the gradient of objective function with respect
to the free parameters. The optimization is solved iteratively with the quasi-Newton method. The
flow solver uses an arbitrarily high-order HDG scheme on unstructured mesh with a non-dissipative
and discrete kinetic energy conserving flux approximation. To preserve such property on unstruc-
tured mesh, the adjoint momentum flux and boundary conditions are derived consistently with the
forward discretization scheme. After obtaining the HDG solution for velocity, the pressure field
in each element can be reconstructed by extending the test functional space for the momentum
equation to include the curl-free basis.

Given the computational cost required for assimilating flow fields involving a wide range of
scales, a parallel implementation of the algorithm has been completed. Various canonical flow
cases are tested and analyzed, including a fully turbulent flow field. Future work will apply the
algorithm for realistic experimental test cases and conduct an in-depth analysis of the computational
accuracy and efficiency of the method.
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Appendix
We first define two short notations T1 and T2. Let a, b and c be three arbitrary vectors, and n be
the face normal vector, then

T1 (a,b,c) = a ⊗ b : ∇c, T2 (a,b,c) = a(b · n) · c. (14.25)
Let H(η) denote the unit step function, the nonlinear convective terms are as follows.
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Development, Application, and Refinement of a
New Data-Driven Turbulence Modeling
Methodology

Niloy Gupta & Karthik Duraisamy

This report describes the work performed by the authors over the past year to develop, ap-
ply, and improve a systematic methodology for developing data-driven turbulence models.
We propose and outline the steps of the methodology, which uses gradient-based optimiza-
tion and the Learning and Inference Assisted by Feature-space Engineering framework.
This methodology is developed in the context of improving turbulent heat transfer mod-
eling for hypersonic flows. Our work on this problem shows that piecewise multilinear
maps and properly designed features can provide better accuracy, robustness, and gener-
alizability compared to neural networks, resulting in a preliminary model that successfully
generalizes to a different geometry with a different shock mechanism. We also apply this
methodology to improve smooth body separation prediction and investigate optimal feature
design. Analyzing validation case performance is necessary to determine an optimal set of
features. Furthermore, theoretically better features do not always yield improved predictive
performance as they can lead to overfitting during training. The proposed methodology is
not complete; improvements to the feature design process and piecewise multilinear map
implementation will be worked on during the upcoming reporting period.

Keywords: turbulence modeling, data-driven modeling, separated flows

15.1 Introduction

Reynolds-averaged Navier-Stokes (RANS) simulations remain the dominant choice for the analysis
of engineering flows due to their balance between accuracy and computational cost. However, the
assumptions and simplifications inherent to RANS models result in systematic errors that prevent
them from accurately representing complex turbulent flows (Duraisamy et al., 2019). Recently,
data-driven modeling and machine learning have emerged as promising avenues for addressing such
deficiencies while still maintaining computational efficiency. However, some of the existing ap-
proaches in the literature neglect a key concept–model consistency. For turbulence modeling for
RANS simulations, it is imperative that the model is trained with consideration to the low-fidelity
model. If an augmentation is only trained using data directly taken from high fidelity sources, mis-
matches between features during training and prediction, accumulation of errors, and introduced
imbalances between model terms will prevent it from accurately estimating model discrepancy (Du-
raisamy, 2021).

To address this concern, Parish and Duraisamy (2016) and Singh and Duraisamy (2016) devel-
oped the field inversion and machine learning (FIML) approach. It is a two-step approach where
field inversion is first performed to learn a spatially defined discrepancy field quantifying model-form
error before it is approximated in terms of non-dimensional input features to create a predictive
model. It has been successfully applied to various fluid flow problems, including turbomachinery
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modeling (Ferrero et al., 2020), separation prediction (Singh et al., 2017b), and transition predic-
tion (Yang and Xiao, 2020).

Holland et al. (2019) and Sirignano et al. (2020) improved upon FIML by combining discrep-
ancy field estimation and model parameter inference into a single coupled procedure referred to
as integrated inference and machine learning (IIML). The augmentation is embedded within the
solver during training, and model parameters are optimized directly across all cases simultaneously.
This inherently accounts for the model’s functional form during training and improves upon the
consistency between the learning and prediction environments, resulting in a more accurate and
generalizable model (Holland et al., 2019; Sirignano et al., 2020; Duraisamy, 2021; Fang et al., 2023).
Despite these improvements, simple IIML techniques lack safeguards for ensuring the robustness
and generalizability of the model. Srivastava and Duraisamy (2021) address this by proposing
the Learning and Inference Assisted by Feature-space Engineering (LIFE) framework, which pro-
vides guiding principles for developing robust, generalizable turbulence model augmentations using
limited training data.

However, further improvements are still required for data-driven modeling frameworks to be
used for engineering design and analysis. Data-driven models, particularly those utilizing neural
networks, often lack physical interpretability due to their complex, nonlinear structure, which
obscures the relationship between inputs and outputs (Kutz, 2017). As a result, they can behave
unpredictably when extrapolated beyond their training regime (Zhu et al., 2023; Barnard and
Wessels, 1992). Feature-based models are generally more interpretable, but require users to make
numerous modeling decisions: the choice of augmented terms, model structure, hyperparameters,
and, most critically, the set of input features. These features must identify regions where the
baseline turbulence model fails and distinguish relevant physical phenomena. While the proposing
papers and other studies justify their chosen features, they often fail to describe the details of
their derivation, lack systematic guidance on feature derivation, or use unrecommended quantities
according to Spalart (2015).

In this report, we summarize the work conducted over the reporting period to address existing
gaps between proposed frameworks for data-driven turbulence modeling in the literature and their
practical implementation. Section 15.2 describes the methodology that has been developed. Sec-
tion 15.3 describes the modeling effort for turbulent heat transfer in hypersonic flows that was used
to develop the methodology, and Section 15.4 describes the ongoing work to apply this methodology
for improving smooth body separation prediction. Finally, Section 15.5 summarizes our progress
and findings and outlines our plans for the upcoming period.

15.2 Turbulence model augmentation and inference
methodology

During the reporting period, we developed an inference methodology for designing and training
robust, generalizable turbulence model augmentations for RANS simulations. It was developed
during the work outlined in Section 15.3. The steps of the methodology are as follows:

1. Identify a physically meaningful augmentation target by addressing the most critical assump-
tions or modeled terms causing inaccuracies for the flow of interest.

2. Evaluate the viability of the augmentation and determine its optimal form through field
inversion (FI), ensuring that the predicted corrections are physically consistent.
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3. Simplify the development process via an idealized learning problem, which clarifies how feature
choices, feature-space representations, and hyperparameters affect the accuracy and robust-
ness of the final augmentation.

4. Incrementally refine the model by progressively adding features or complexity to address spe-
cific shortcomings in the initial augmentation, ensuring targeted performance gains without
compromising interpretability.

For our work, this methodology is enabled by two specific components: gradient based opti-
mization using the discrete adjoint method and the LIFE framework.

RANS augmentation using the discrete adjoint method
We introduce an augmentation model into the RANS equations by implicitly defining it as a function
of features. With Rm representing the RANS residual operator that solves for states ũm, the
augmented equations can be expressed as

Rm,aug(ũm;β(ηηη(ũm),w), ξξξ) = 0. (15.1)

The augmentation model β(ηηη(ũm),w) is evaluated at every finite volume cell in the mesh and
parameterized by w. The cell’s states are used to calculate a feature vector ηηη, which is the input
to the model that calculates β, the discrepancy term for that point in the computational domain.
Turbulence model performance is assessed using a cost function J that is explicitly a function of ũm

and implicitly a function of β
(
ηηη (ũm) ,w

)
. Provided that a model structure is specified, obtaining

the best turbulence model is accomplished by solving the optimization problem

min
w
J (ũm;β(ηηη(ũm),w)) s.t. Rm,aug(ũm;β(ηηη(ũm),w), ξξξ) = 0. (15.2)

Since w is often high-dimensional, this optimization problem is best solved using gradient-based
techniques. For our work, we use the discrete adjoint method. Differentiating the cost function
J (ũm;β(ηηη(ũm),w)) with respect to w and substitution of terms yields the desired gradient

dJ
dw =

(
∂J
∂β

+ψψψT ∂Rm,aug
∂β

)
∂β

∂w , (15.3)

where ψψψT is adjoint vector that is the solution to the adjoint system given by Giles and Pierce
(2000); Giles et al. (2003),

ψψψT ∂Rm,aug
∂ũm

=− ∂J
∂ũm

. (15.4)

Learning and inference assisted by feature-space engineering
The Learning and Inference Assisted by Feature-space Engineering (LIFE) framework, proposed
by Srivastava and Duraisamy (2021), is an extension of integrated inference and machine learning
(IIML) frameworks. IIML frameworks were developed to improve field inversion and machine
learning (FIML) by directly optimizing model parameters when learning optimal augmentation
fields to ensure that they are realizable by the model structure. This helps to enforce consistency
in the learned model across all training cases (Holland et al., 2019; Sirignano et al., 2020; Fang
et al., 2023). LIFE builds upon IIML by providing guiding principles and an implementation of
them for developing model augmentations that: 1) generalize to unseen configurations and cases, 2)
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minimize spurious predictions, and 3) train using limited data. The framework’s key contribution
is the concept of localized learning. Localized learning techniques restrict modifications of the
baseline model to regions of the feature space with training data, ensuring that the model behaves
according to the baseline model elsewhere. Since the baseline model is a physically valid solution,
this prevents spurious behavior that can arise from simple nonlinear augmentation functions that
are commonly used in machine learning (Srivastava and Duraisamy, 2021).

15.3 Application to turbulent heat transfer in hypersonic flows
This section briefly summarizes the work done that yielded the augmentation and inference ap-
proach described in Section 15.2. For brevity of the report, only the major conclusions are provided.
We refer the reader to Gupta and Duraisamy (2025) for the full details of this effort.

Modeling problem and augmentation choice

Since the most commonly used turbulence models were designed and calibrated for subsonic incom-
pressible flows without significant pressure gradients or heat transfer, they struggle to accurately
predict hypersonic flows. In particular, when applied to hypersonic flows exhibiting shock-boundary
layer interactions (SBLIs), they grossly overestimate the predicted heat transfer Raje et al. (2025).
One of the sources for this error is the turbulent heat transfer model, typically given by

cpρu′′
jT

′′ ≈−cpµt

Prt

∂T̂

∂xj
, (15.5)

where cp is the isobaric specific heat constant, and T is the temperature. It is analogous to the
model for the mean laminar heat transfer and makes use of Morkovin’s hypothesis to provide a
constant value for the turbulent Prandtl number Prt close to unity (Smits and Dussauge, 2006; Duan
et al., 2011). However, in hypersonic flows and flows with shockwaves, compression and dilatation
cannot be ignored, invalidating this assumption and requiring a variable-Prt model (Rotta, 1965;
Horstman and Owen, 1972; Priebe and Mart́ın, 2021). Consequently, we augment our baseline
turbulence model, the Wilcox 2006 k−ω model (Wilcox, 2008), through the modification

Prt = f
(
β
(
ηηη(ũm)

))
Prt,0, (15.6)

where f is some function of the discrepancy field and Prt,0 = 0.9 is the baseline value.

Full and idealized learning problems

We assess the turbulence model and RANS performance using the objective function

J = 1
nx

nx∑
i=1

(
qw,m(xi)− qw,ref (xi)

)2
, (15.7)

which is the mean-squared error of the wall heat transfer predictions by the model with respect
to the reference data constructed from the experimental data provided in the studies listed in
Table 15.1 at nx wall faces in the computational domain. The reference data is constructed to
isolate the increase in heat transfer due to the SBLI and ignore other external phenomena and
discrepancies (Gupta and Duraisamy, 2025). The full learning problem can be stated as Eqn. (15.2)
with the objective function J provided by Eqn. (15.7).
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Case Study Data Type Geometry M∞ Angle (◦)

S6

Schülein (2006) Experimental Oblique incident shock
wave 5.00

6

S10 10

S14 14

C15 Coleman and Stollery
(1972) Experimental Compression corner 9.22

15

C30 30

Table 15.1: External data used for training augmentations.

However, directly proceeding to designing a generalizable augmentation is challenging due to
the number of design decisions required. Therefore, we formulate an idealized learning problem to
learn an existing variable turbulent Prandtl number model. The cost function for this problem is
given by

Jk = 1
nx

nx∑
i=1

(
qw,m(xi)− qw,KC(xi)

)2
, (15.8)

which is the mean-squared error of the wall heat transfer predictions by the model and the variable-
Prt model of Kays and Crawford (1993), henceforth referred to as the idealized model, which can
be stated as

Prt = 1

0.5882+0.228
(
νt/ν

)
−0.0441

(
νt/ν

)2 [1− exp
(

−5.165
νt/ν

)] . (15.9)

The goal of solving this problem is to develop a single-feature model where a function of νt/ν is used
to recreate the idealized model. However, it cannot be exactly recreated, as many model structures
require closed intervals for inputs or bounded inputs for improved performance. Therefore, it serves
as an excellent problem for characterizing the numerics of the full learning problem and developing
guidelines for optimal feature design.

Findings from field inversion

Following our proposed methodology, we next ensure the viability of our augmentation by perform-
ing field inversion (FI). Furthermore, we use FI to determine the best mathematical form of the
augmentation among four options: βPrt, Prt/β, eβPrt, and e−βPrt. These four options provide
different benefits in terms of numerical stability, unconstrained versus constrained optimization,
and emphasis on different inferred values of Prt.

Figure 15.1 shows the results of this effort. We ascertain that the variable-Prt augmentation
can yield the desired improvement in wall heat transfer predictions and identify the multiplicative
exponential form (Prt→ eβPrt) as the optimal augmentation. It performs strongly on the Mach 5
oblique shock cases, comparably to Prt/β, and provides the most stable optimization for the Mach
9 compression corner cases. Its unconstrained nature allows for simpler optimization methods to
be used. We adopt this augmentation for the remainder of the hypersonics modeling work.
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(a) Prt → βPrt

0 10 20 30 40 50 60

Optimization Iteration

10−12

10−10

10−8

10−6

10−4

10−2

100

O
b

je
ct

iv
e

Case S6

Case S10

Case S14

Case C15

Case C30

(b) Prt → Prt/β
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(c) Prt → eβPrt
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(d) Prt → Prt/eβ

Figure 15.1: FI objective training history for each augmentation form for inferring the reference data constructed for
all training cases.

Findings from the idealized learning problem

To better understand the full learning problem and develop feature design guidelines for it, we
compare the training and prediction performance of various Prt augmentations, employing dif-
ferent feature-space representations and features based on the viscosity ratio νt/ν. Specifically,
we compare fully connected neural networks with piecewise multilinear maps (PMMs) for the
feature-space representation and a simple feature (νt/ν) with a wrapped ( ν

νt+ν ) and a logarithmed

(5tanh
(

log10 ( νt
ν

+ε)
0.75·5

)
) feature. We refer the reader to Section 3.6.2 and Appendix B of Gupta and

Duraisamy (2025) for a detailed description of PMMs, which are an efficient way of representing a
nonlinear multivariate function by storing its values at discretized nodes in a closed input space.

We find that, for this specific problem, PMM augmentations are easier to train and can reduce
the objective function in significantly fewer steps than neural networks. Additionally, for neural
networks, random parameter initialization affects training consistency, convergence speed varies
across trials, objective values do not always decrease monotonically, and final models behave in-
consistently. These findings suggest that PMMs are more robust than neural networks, as their
behavior remains consistent and predictable outside the training regime. In contrast, neural net-
works exhibit inconsistent extrapolation behavior. This can be seen in Figure 15.2, which shows the
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Feature Lower Bound Upper Bound # Nodes

5tanh
(

log10 (νt/ν+ε)
0.75·5

)
-5.0 5.0 41

1.5tanh
(

1
1.5

−∇T ·n̂
T /dwall

)
-1.5 1.5 41

Table 15.2: Features used and PMM configuration for the preliminary model.

inferred Prt
(
νt/ν

)
-functions for all neural networks (a) and PMM models (b) using the logarithmed

feature. Therefore, we choose PMMs as the feature-space representation for the preliminary model
to predict the experimental data.
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(b) PMM

Figure 15.2: Inferred Prt
(
νt/ν

)
functions for augmentations using the logarithmed feature (number of model param-

eters n distinguished by colored lines) compared with the function of the idealized model along with the distribution
of νt/ν-values in the boundary layer for each training case (distinguished by colored bars).

Preliminary model and prediction

Using the PMM as our feature-space representation, Table 15.2 describes the features and dis-
cretization of the preliminary augmentation. We use two features to gradually increase model
complexity and gain insight on how interactions between features affect model performance. We
prioritize using flow quantities that have the greatest significance for turbulent heat transfer and
apply the process used to solve the idealized learning problem to analyze their values and obtain
the final mathematical forms. The first feature is the same logarithmed feature used to recreate
the idealized model. The second is based on the wall-normal temperature gradient, a quantity that
has been shown to help distinguish between wall heating and cooling (Parish et al., 2024).

Figure 15.4 shows the predicted heat transfer distributions in terms of the Stanton number
St = qw

ρ∞u∞cp(Tr−Tw) for the training cases. We train our model on the Mach 5 oblique shock cases
(Cases S6, S10, and S14), which are weighted equally. Figure 15.3 shows the training history of the
preliminary model, and Figure 15.4 shows the predicted heat transfer distributions for the training
cases.

The model successfully infers an improved heat transfer distribution. Quantitatively, the ob-
jective function is reduced by over two orders of magnitude for each case. However, there are
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Figure 15.3: Objective training history of the preliminary model for inferring the reference data constructed for the
Mach 5 oblique shock cases.

two limitations to this learned model: there is some oscillatory behavior in the predicted heat
transfer profiles just downstream of the interaction locations, and the undisturbed boundary layer
upstream of the interaction is modified. Since our reference data is designed to minimize augmen-
tation influence in this region, such changes indicate that at least one additional feature is needed
to differentiate between undisturbed and disturbed regions in the final model.

To assess the generalizability of this preliminary model, we test it on the α= 0.26 forward-facing
curved-wall case from Nicholson et al. (2024). It has an inflow Mach number of 4.9 and includes flow
separation, similar to Cases S10 and S14. However, the geometry and shock interaction mechanism
differ from the training cases. Instead of an externally generated oblique shock that impinges on a
flat plate boundary layer and forms a reflected shock, it features a single shock induced by the wall
geometry and a curved expansion corner. It also has a higher wall-to-recovery temperature ratio
of 0.93 compared to 0.73 for the training cases. Thus, beyond evaluating geometric extrapolation,
this test assesses the model’s robustness when encountering unseen physical phenomena.

Figure 15.5 shows the predicted wall heat transfer distribution, The preliminary model improves
heat transfer predictions, demonstrating the potential of our proposed methodology for developing
turbulence augmentations. The existence of the expansion fan does not cause any spurious predic-
tions, which can be attributed to the localized learning enabled by the PMM. However, like the
training cases, there is a slight modification to the boundary layer upstream of the interaction.
Future work will include investigating and adding more features to prevent this.

15.4 Application to smooth body separation prediction
Most one- and two-equation RANS turbulence models have also been developed in the context of
simple shear flows without adverse pressure gradients (APGs). Therefore, for flows that exhibit
smooth body separation due to APGs, they are unable to accurately predict the location and extent
of the separation region (Tracey et al., 2013; Gao, 2014; Jespersen et al., 2016; Singh et al., 2017a).
While several data-driven modeling frameworks have been successfully applied to improve RANS
separation prediction (Ling et al., 2016; Wang et al., 2017; Wu et al., 2018; Singh et al., 2017b,a),
they require improvements with respect to their interpretability and robustness during extrapolation
to be used during engineering design and analysis. Since our proposed methodology seeks to address
this, we apply it to this modeling problem with the goal of comparing the resulting model with those
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Figure 15.4: Heat transfer profiles of the preliminary model compared with the experimental data and baseline model
for the training (Mach 5 oblique shock) cases.
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Figure 15.5: Predicted wall heat transfer distribution of the preliminary model compared with the baseline model
and DNS results for the validation case.
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existing in the literature and further refining it. This section outlines the preliminary work done
during the reporting period to develop such a model that will be continued during the upcoming
period.

Baseline model
The baseline model for this effort is the Wilcox 2006 k−ω turbulence model, given by

∂(ρk)
∂t

+ ∂(ρujk)
∂xj

= P −β∗
Wρkω+ ∂

∂xj

(µ+σk
ρk

ω

)
∂k

∂xj

 , (15.10a)

∂(ρω)
∂t

+ ∂(ρujω)
∂xj

= γω

k
P −βWρω2 + ∂

∂xj

(µ+σω
ρk

ω

)
∂ω

∂xj

+ ρσd

ω

∂k

∂xj

∂ω

∂xj
. (15.10b)

Constant definitions can be found in Wilcox (2008). Production is approximated by

P = νtSijSij , (15.11)

where Sij is the traceless rate-of-strain velocity tensor, to better align with the results posted on
the NASA Turbulence Modeling resource.

Augmentation choice and model structure
We augment the production term in the ω-equation by directly multiplying the augmentation field
to yield the modified term

β
(
ηηη(ũm)

) γω
k
P. (15.12)

We choose to augment this term since it has shown prior success in improving separation predic-
tion (Singh et al., 2017a). Furthermore, due to this success and subsonic turbulent separation
being well-studied in the literature, we forgo the step of examining an idealized learning problem.
Instead, we focus more on optimal feature design and selection to refine our proposed methodology.

Our chosen model structure is a PMM of the same form used in the hypersonic modeling effort.
As discussed in Section 15.3, a PMM is chosen over a neural network since it can offer improved
robustness and generalizability on unseen cases outside of the training regime.

Objective function and data
To assess model performance we compare the skin friction predicted by RANS to reference data
using the objective function

J =
nx∑
i=1

(
cf,m(xi)− cf,ref .(xi)

)2
. (15.13)

The augmentation model is trained on the experimental skin friction data for the “2D NASA
Wall-mounted Hump Separated Flow Validation Case” (2DWMH) as provided on the NASA turbu-
lence modeling website (Rumsey, 2021). To focus on learning the flow separation and reattachment
downstream of the hump and due to concerns with the noise of the data along the hump, the
reference data is a concatenation of the baseline turbulence model’s skin friction data upstream
and along the hump (x < 0.7) and the experimental data downstream of this point.
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For model validation, we use DNS data provided by Uzun and Malik (2022) for the two-
dimensional Boeing speed bump with Re∞ = 2× 106. While this case, like the 2DWMH training
case, is also an incompressible boundary layer flow exhibiting smooth body separation downstream
of a wall protrusion, it has two notable differences: the freestream Reynolds number is twice as
large, and the boundary layer height is only a fraction of the bump height. In the training case,
the boundary layer height is roughly the same as the bump height. Therefore, this case serves as
an excellent test of the robustness and generalizability of the trained models.

Features examined

To determine the optimal input features to the augmentation model, we examine a set of seven
features, which are listed in Table 15.3. The quantities used in the features are defined as

Ret = νt

ν
, (15.14)

where ν and νt are the laminar and turbulent kinematic viscosities,

ReΩ = d2
wΩ
ν

, (15.15)

where dw is the distance to the nearest wall and Ω is the vorticity magnitude,

Rek = dw

√
k

ν
, (15.16)

where k is the turbulent kinetic energy,

r∗ = S

Ω , (15.17)

where S is the strain-rate magnitude, and

Qcrisc = 1− r∗2

1+ r∗2 . (15.18)

Figure 15.6 shows contour plots for each of these features for the training case. As can be seen
in the plots, features with similar motivations have differing abilities to highlight regions of interest
in the flow.

Results

We perform two investigations on optimal feature design and selection. The first is to determine
which triplet of features performs best during training and validation, and the second the impact
of scaling a feature to change how it fills its output range.

Optimal feature triple

For this effort, six different feature triples are tested: (1,3,5), (2,3,5), (1,4a,5), (1,4a,6), (2,4a,5),
(2,4a,6). Each triple is trained using 213, 163, and 113 parameters in the feature space to determine
effect of feature-space discretization on performance. The optimization procedure for all augmen-
tations is a modified form of the BFGS method in which a conservative step size is explicitly given
instead of being determined using a line search for ease of implementation.
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# Feature definition Lower Bound Upper Bound Motivation

1 Ret
1+Ret

0 1 Distinguish between boundary
layer and freestream

2 Ret
100+Ret

0 1 Distinguish between boundary
layer and freestream, slower
growth within boundary layer

3 Ret
Ret+0.01ReΩ

0 1 Capture recirculation and
non-equilibrium behavior

4a Ret
Ret+Rek

0 1 Capture recirculation and
non-equilibrium behavior

4b Ret
Ret+0.01Rek

0 1 Capture recirculation and
non-equilibrium behavior,
fill feature’s range better
compared to 4a

5 r∗

1+r∗ 0 1 Distinguish between strain
dominated and vorticity dom-
inated regions

6 tanh(Qcrisc) -0.76 0.76 Distinguish between strain
dominated (positive) and vor-
ticity dominated (negative)
regions

Table 15.3: List of features examined for the augmentation model.

Table 15.4 shows the final objective values obtained during training for all model configurations.
The initial objective value of the baseline model is 1.98×10−7. Figure 15.7 compares the inferred
skin friction and pressure coefficients for each augmentation with n = 163 parameters with the
experimental data and baseline model. Figure 15.8 compares their inferred augmentation fields.
Across all feature combinations, several common trends are observed. Almost all models are able
to qualitatively improve the predicted skin friction profiles significantly and match the size of the
separation region and reattachment location. They also improve the pressure coefficient predictions
downstream of the hump, but are unable to obtain the desired pressure in the separation region.
All triples primarily focus on reducing the production of specific dissipation in the region of the
flow just downstream of the separation point on the wall. None augment the turbulence model in
the freestream or in the region of the boundary layer in the middle of the hump above the near-wall
region. However, all modify the turbulence model in the undisturbed boundary layer upstream of
the hump, indicating that at least one new feature is needed for all models to isolate this region.

Despite having similar wall distributions, Figure 15.8 reveals the differences between the feature
triples. (2,3,5) and (2,4a,5) exhibit more regular and less oscillatory behavior that would make
them more physically likely. (1,3,5) contains less modification in the undisturbed boundary layer
upstream of the hump and contains more localized regions of significant deviation from the baseline
model. Therefore, just from this examination of the training performance, it is ambiguous which
triple is optimal.

Figure 15.9 compares the predicted skin friction and pressure coefficients for each augmentation
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(a) Feature 1 (b) Feature 2

(c) Feature 3 (d) Feature 4a

(e) Feature 4b (f) Feature 5

(g) Feature 6

Figure 15.6: Contour plots of the examined features on the 2DWMH training case.

(((111,,,333,,,555))) (((222,,,333,,,555))) (((111,,,444,,,555))) (((111,,,444,,,666))) (((222,,,444,,,555))) (((222,,,444,,,666)))

nnn=== 222111333 3.35×10−8 6.90×10−8 3.55×10−8 2.53×10−8 5.81×10−7 1.74×10−7

nnn=== 111666333 2.42×10−8 1.01×10−8 1.83×10−8 1.94×10−8 1.00×10−8 5.50×10−9

nnn=== 111111333 3.89×10−8 5.63×10−9 5.27×10−8 3.84×10−8 4.26×10−8 8.60×10−8

Table 15.4: Final objective function values obtained for all augmentations trained to infer the reference data con-
structed for the 2DWMH case. The initial objective value of the baseline model is 1.98 × 10−7.

with n = 163 parameters with the DNS data and baseline model for the two-dimensional Boeing
speed bump validation case. Figure 15.10 compares their predicted augmentation fields. Since the
n= 163 discretization yielded the best results for the training case, it is used for the validation case.
Unlike for the training case, the wall distributions vary significantly based on the feature triple used.
Only three, triples (2,3,5), (1,4a,5), and (1,4a,6) are able to predict the skin friction reduction.
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Figure 15.7: Inferred wall distributions for each feature triple using n = 163 parameters on the 2DWMH training
case.

Among these, feature triple (1,4a,5) matches the size of the separation region and the undisturbed
region downstream of the hump the closest. Its pressure coefficient prediction is comparable to
that of the other two. Examining the augmentation fields reveals why these three feature triples
perform the best on the validation case. They are the only ones able to predict a region of decreased
turbulence dissipation just downstream of the separation point on the hump. Overall, they match
the augmentation fields of the training case the closest. Furthermore, the triple (1,4a,5) has a
smoother predicted augmentation field compared to the triple (1,4a,6). Therefore, based on its
performance on both the training and validation cases, we determine that feature triple (1,4a,5) is
the optimal feature triple based on the ones examined.

Optimal feature scaling

The strong performance of feature triple (1,4a,5) is somewhat surprising considering that Feature 4a
is not optimally designed. As can be seen in Figure 15.6d, its effective output range on the training
case does not fill the theoretical output range which is discretized in the PMM representation of
the feature space. To determine the effect this has on performance, we also examine Feature 4b,
which is the same feature except for a different constant value to better fill the output range.
Figure 15.6e shows the increase in detail it provides about the flow. Therefore, it is expected that
the triple (1,4b,5) will outperform (1,4a,5) for both the training and validation cases. To test this
hypothesis, we train three more models using the feature triple (1,4b,5), one for each discretization
level, and compare the results with those using the triple (1,4a,5).

Figure 15.11 compares the training history between the two sets of models, Figure 15.12 com-
pares the wall skin friction and pressure coefficient distributions, and Figure 15.13 compares the
inferred augmentation fields. The models using Feature 4b reach a lower objective value in the
first ten steps due to the increased fidelity. The ability to capture more detail also results in in-
creases in the objective value before the forward simulations converge, whereas Feature 4a results
in sudden failure. For all configurations, the final skin friction profiles perform comparably, shown
quantitatively by the training history plots and qualitatively by the wall distributions. The dif-
ferences between the two feature sets can be seen in the augmentation fields. For the two higher
discretization levels, the models using Feature 4b have more localized changes with fewer extreme
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(a) Features (1,3,5)

(b) Features (2,3,5)

(c) Features (1,4a,5)

(d) Features (1,4a,6)

(e) Features (2,4a,5)

(f) Features (2,4a,6)

Figure 15.8: Inferred augmentation fields for each feature triple using n = 163 parameters on the 2DWMH training
case.
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Figure 15.9: Inferred wall distributions for each feature triple using n = 163 parameters on the Boeing speed bump
validation case.

values and modify the undisturbed boundary layer regions by a lesser degree. The reverse is true
for the coarsest n= 113 discretization, but this can be attributed to the optimization procedure for
feature triple (1,4b,5) lasting for three times as many steps. Regardless of the discretization level,
all models using Feature 4b are able to identify the same region of decreased turbulence dissipation
production just downstream of the hump. Therefore, due to the simplicity and physical realizability
of the augmentation fields, Feature 4b appears to be more optimal than Feature 4a.

Figure 15.14 compares the predicted wall skin friction and pressure coefficient distributions
for the n = 163 discretization level on the Boeing speed bump validation case, and Figure 15.15
compares the predicted augmentation fields. Both show that, unlike for the training case, Feature
4b degrades performance for the validation case. It results in only a minor improvement to the
prediction of the separation region for both skin friction and the pressure coefficient. This can
be attributed to the inability of the model using Feature 4b to adequately identify the region
of decreased turbulence production, which can be seen in the augmentation fields. Unlike the
model using the triple (1,4a,5), the degree of deviation from the baseline is less and the region of
decreased turbulence production is smaller. This results in less change from the baseline in the wall
distributions.

One reason for the decreased performance on the validation case could be that with the higher
fidelity of Feature 4b, the model was able to overfit to the training data, reducing its generalizabil-
ity. Feature 4a can be considered equivalent to using Feature 4b with a coarser discretization for
the feature, and it is known that coarser discretizations increase the generalizability for PMMs (Sri-
vastava and Duraisamy, 2021; Gupta and Duraisamy, 2025). Therefore, it is possible that there
exists a discretization level where the using the triple (1,4b,5) yields better results than using
(1,4a,5). This is something we plan to investigate in the upcoming year. Regardless, it is clear
that having more detailed features does not always resulting in improved model performance, so
more sophisticated feature design processes and metrics are required.
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(a) Features (1,3,5)

(b) Features (2,3,5)

(c) Features (1,4a,5)

(d) Features (1,4a,6)

(e) Features (2,4a,5)

(f) Features (2,4a,6)

Figure 15.10: Inferred augmentation fields for each feature triple using n = 163 parameters on the Boeing speed bump
validation case.
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Figure 15.11: Comparison of training history between models using input features (1,4a,5) and models using (1,4b,5)
for all discretization levels for inferring skin friction data for the 2DWMH case.
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Figure 15.12: Inferred wall distributions for each feature triple using n = 163 parameters on the 2DWMH training
case.

15.5 Conclusions

This report describes the work done over the reporting period to develop, apply, and improve a
systematic methodology for developing data-driven turbulence model augmentations. This method-
ology is developed with the goal of examining modeling choices and implementation details often
overlooked in existing literature. The steps of the methodology can be summarized as: 1) identify
an augmentation by analyzing critical assumptions in the low-fidelity model, 2) evaluate the viabil-
ity of the augmentation through field inversion, 3) devise and solve an idealized learning problem
to better understand the impact of modeling decisions, and 4) incrementally improve the model by
progressively adding features.

We outline how this methodology is developed by summarizing the modeling effort on turbu-
lent heat transfer for hypersonic flows. We identify that the constant turbulent Prandtl number
assumption is a key source of error for hypersonic flows and show, through field inversion, that
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(a) Features (1,4a,5), n = 213 (b) Features (1,4b,5), n = 213

(c) Features (1,4a,5), n = 163 (d) Features (1,4b,5), n = 163

(e) Features (1,4a,5), n = 113 (f) Features (1,4b,5), n = 113

Figure 15.13: Inferred augmentation fields for feature triple (1,4a,5) compared with (1,4b,5) for each discretization
level on the 2DWMH training case.
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Figure 15.14: Inferred wall distributions for each feature triple using n = 163 parameters on the Boeing speed bump
validation case.
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(a) Features (1,4a,5), n = 163

(b) Features (1,4b,5), n = 163

Figure 15.15: Inferred augmentation fields for feature triple (1,4a,5) compared with (1,4b,5) for each discretization
level on the Boeing speed bump validation case.

a spatially varying model can address the overprediction in heat transfer due to shock-boundary
layer interactions. We devise an idealized learning problem to learn an existing variable turbulent
Prandtl number relation and use it to assess the impact of the chosen feature-space representation
and input feature form on augmentation performance. We demonstrate that piecewise multilinear
maps, over neural networks, can match target behaviors more accurately, require fewer parameters,
and remain robust when extrapolating beyond training data. With this knowledge, we develop a
two-feature preliminary model with input features based on the scaled laminar-to-turbulent viscos-
ity ratio and the wall-normal temperature gradient. It successfully trains on experimental data for
a Mach 5 oblique-shock impinging flow and generalizes well to a more complex geometry with a
different shock mechanism, providing physically realizable fields while maintaining accurate predic-
tions. However, several improvements are still required for the augmentation to reduce its region
of influence to only regions affected by shock interactions and generate more accurate predictions.

We then apply this methodology to a different modeling problem of improving smooth body
separation prediction, focusing mostly on the feature design process. We choose to augment the
production term for turbulence dissipation in the Wilcox 2006 k-ω model for its known ability to
improve separation prediction. We analyze a set of seven features to determine what characteristics
an optimal combination of features has and how scaling of an individual feature affects augmentation
performance. We determine that, while some insight can be gained from analyzing the quality of
augmentation fields on the training cases, augmentation behavior on validation cases provides the
most information. Performant feature combinations yield augmentations that are able to identify
similar flow features across the training and validation cases and have smooth behavior in the
augmentation field for the validation cases. For feature scaling, while a more suitably scaled
feature that can provide higher fidelity leads to improved performance during training, it can lead
to overfitting and worse performance on the validation case despite better theoretical capabilities.

We plan to focus on improving the feature design process and developing more flexible feature-
space representations. Specifically, we will develop quantitative metrics, likely based on information
theory, to compare (combinations of) features. Such metrics should provide explanations for the
findings on optimal feature combinations discussed in this report. We also plan to develop an
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adaptive piecewise multilinear map implementation that can consider the availability of training
data in the feature space to strike a better balance between coarse discretizations for generalizability
and fine discretizations for training accuracy.
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CNRE Undergraduate Summer Research
Experience 2025

This article summarizes the research performed during the 2025 Undergraduate Summer
Research Program that extended from May 27 to August 7, 2025. A total of 13 undergrad-
uate students worked with postdoctoral researcher, senior graduate student and faculty
mentors, and Navy collaborators on a range of topics that are detailed below. The en-
tire team was made up of members of the Mechanical, Electrical, Aerospace, NA&ME,
Computer Science, and Math departments. The undergraduate students were educated
on cutting–edge naval and marine problems and taught to conduct research using state of
the art approaches. An exciting ten weeks culminated in a well–received final presentation
workshop.

A group picture after the Final Presentation Workshop on August 7, 2025.

The projects are summarized below in alphabetical order based on the last names of the under-
graduate researchers. Superhydrophobic surfaces offer the potential to reduce drag, and a recently
developed drag model was combined with formal optimization methods to seek superhydrophobic
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surfaces with good drag–reducing properties (section 16.1). A custom High–Area Rapid Printing
(HARP) system tailored for grayscale, layerless hydrogel printing was studied (section 16.2) as
an approach to engineering synthetic soft materials relevant to biofouling. A pneumatic actua-
tion system was improved upon, to enable the rapid control of smart morphable surfaces used for
flow control (section 16.3). Numerical simulations were performed (section 16.4) to simulate the
growth and collapse of bubbles in cavitation susceptibility meter–relevant geometries. An experi-
mental study on pendulum–based wave energy converters explored (section 16.5) counterweight and
negative stiffness mechanisms for resonance tuning. Different synthetic materials were evaluated
for future biofouling studies and measurement software for the Skin Friction Flow Facility (SF3)
was developed (section 16.6). A recently developed cavitation inception model was applied (section
16.7) to simulate experiments on round jets. The PINN approach was used to compute the pressure
at the center of vortices subject to velocity measurements from particles near the outer periphery
of the vortex (section 16.8). A data buoy prototype capable of autonomously harvesting both wave
and wind energy was tested (section 16.9) for future application to ocean observation. A theoreti-
cal framework for modeling electromagnetic scattering from arbitrary, random, rough surfaces was
employed (section 16.10) to model scattering from the ocean surface. Deep reinforcement learning
(DRL) and its viability for hydrofoil/propeller multi–disciplinary optimization was studied (section
16.11). A framework to streamline and automate differentiation within Monte Carlo simulations
was explored (section 16.12) for its viability for systems such as phase transitions in batteries. The
performance of superhydrophobic surfaces found in nature was studied by constructing accurate
three-dimensional representations of their microstructures and by computing how liquid interfaces
interact with them (section 16.13).

16.1 Gradient Based Optimization of Superhydrophobic Surface Ge-
ometry for Drag Reduction

Veer Agarwal, Gao Jun Wu and Krishnan Mahesh

Due to chemical properties and roughness designs at the nano-to-micro scales, superhydrophobic
surfaces (SHS) are capable of reducing the drag force on vehicles moving through water. This project
constructs a gradient-based constrained optimization framework to find the optimal roughness
design of a SHS for drag reduction. The framework is based on a semi-empirical model relating
the friction coefficient of SHS to the bulk Reynolds number ranging between 5000 and 50000. The
model is calibrated from friction coefficient data of SHS collected in channel flow experiments.
The dependent parameters of the model are six different roughness measures of SHS, including
Wenzel roughness, RMS of the roughness height and the slope, autocorrelation length, the difference
between the mean peak-to-valley height and the mean height, and the projected area normal to
the flow direction. The optimization treats these surface roughness characteristics as free design
parameters and seeks an optimal combination that minimizes the friction coefficient. Inequality
constraints are put in place to keep the surface parameters within a manufacturable range.

The optimization program is implemented in MATLAB and uses its built-in quasi-Newton algo-
rithm to obtain a numerical solution of the optimal surface parameters. Two different formulations
are used as the objective function: maximizing the drag reduction at a single Reynolds number
and maximizing the drag reduction integrated with respect to Reynolds number across the range
of interest.

Both formulations of the objective function find optimal surface parameters that result in a
drag reduction of at least 18% compared to a regular smooth surface across the entire range of
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Figure 16.1: Cf with respect to ReH for a regular smooth surface (black line), baseline SHS (markers), and the
optimized SHS (blue line).

Reynolds numbers. The single Reynolds number objective is observed to be more prone to sub-
optimal results and thus requires more iterations of the optimization runs at each design Reynolds
number. The drag reduction generally decreases as the Reynolds number increases. As opposed to
there being a single unique combination, many different combinations of roughness parameters can
yield optimal drag reduction. The three most sensitive parameters are - Wenzel roughness, RMS
of the roughness slope, and difference between peak-to-valley height and the mean height.

16.2 Towards inverse methods for heterogeneous soft materials: grayscale
polymerization of layerless hydrogels

Joseph Beckett, Aryan Shah, Teagan Fynan, Carl Thrasher and Jon Estrada

While vat photopolymerization (VP) 3D printing is increasingly used for precise fabrication of
complex polymeric parts, its application for engineering mechanically gradient soft materials is re-
stricted by a lack of standardization and validation procedures. As a result, existing uses of VP have
been largely limited to non-critical applications in contrast to metal 3D printing where in-situ pro-
cess monitoring, quality-controlled feedstocks, and postprocess inspection are established. The lack
of validation methods for soft material prints is largely because no single characterization method
has emerged as effective for robustly quantifying spatially varying properties. A key limitation of
emerging inverse methods for heterogeneous samples is the lack of reliable benchmark materials.
Without well-characterized gradient specimens, it is difficult to validate these techniques, yet the
inverse methods themselves are needed to produce and confirm these benchmarks. Inverse meth-
ods for mechanical property identification traditionally assume homogeneous materials, further
complicating efforts to benchmark or validate emerging tools.

To address these challenges, we developed a custom High-Area Rapid Printing (HARP) system
tailored for grayscale, layerless hydrogel printing (Figure 16.2). HARP presents advantages over
other continuous VP technologies—such as enhanced cooling and resin flow—making it suitable
for fabricating specimens with continuous mechanical gradients. The custom printer features a
borosilicate glass vat, precision optics, and stepper-motor-driven motion, all coordinated by a
microcontroller. Resin formulation was also novel, utilizing high water content and glycerol to tune
viscosity, yielding elastic moduli in the 1–10 kPa range. Initial development focused on optimizing
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Figure 16.2: 4D ”HARP” printer setup.

both the printer and hydrogel resin to eliminate typical VP defects, e.g., layering, cracking at
edges, and non-uniform curing. Adjusting print speeds, resin viscosity, and curing parameters
permitted successful layerless prints. The optical system’s intensity profile was characterized to
further refine print accuracy, with additional improvements facilitated by a new precision digital
micromirror device (DMD) for grayscale patterning. Mechanical testing of printed hydrogels showed
repeatability across specimens and correlation between UV dosage and modulus. Preliminary
characterization demonstrated that moduli could be modulated via print parameters. Ongoing
work includes integration of the DMD for finer grayscale control, further resin optimization, and
extensive validation with localized and volumetric measurements.

16.3 Improvement of a Pneumatic Actuation System for Rapid Control
of Smart Morphable Surfaces

Manasa Gollapalli, Sayre Satterwhite and Anchal Sareen

Many aquatic swimmers and avian fliers adaptively morph their fins or wings, enhancing efficiency,
maneuverability, stealth, agility, and resistance to biofouling. Inspired by these natural strategies,
we developed smart morphable surfaces that dynamically adjust surface texture in response to
changing flow conditions, enabling drag reduction over a 3D bluff body or lift generation for ma-
neuvering. However, two key limitations constrain the current approach. First, while dimples can
actuate within 1 second, the return to a smooth state requires 10 seconds, limiting applicability
in scenarios demanding rapid transitions. Second, to suppress flutter in flow, the skin must be pre-
stretched, introducing a baseline micro-dimpled texture instead of a truly smooth reference surface.
The objective of the summer undergraduate research project was to address these two challenges.

To overcome these limitations, we designed a new pneumatic system (Figure 16.3) with one
pressure line (400 kPa) and one vacuum line (50 kPa). The dual-line setup enables both equalization
of internal and external hydrostatic pressure and rapid depressurization/repressurization of the
body. The vacuum line is generated via a venturi connected to the pressure line and is supported

254



CNRE Undergraduate Summer Research Experience 2025

Figure 16.3: Wake deflection and alternating lift generation on a sphere via smart surface morphing. (a) Lift coefficient
over one cycle. Smoke visualization at (a) maximum positive lift, (b) zero lift, and (c) maximum negative lift. Smart
surface morphing enables controlled wake deflection, producing alternating side forces that could be leveraged for
maneuvering.

by 1 L of depressurized air tanks to provide sufficient capacity for air release. Each line is controlled
by a solenoid valve that can open or close to decrease, increase, or maintain pressure. A pressure
sensor provides feedback to the controller, which governs the solenoid valve states.

Using this system, the repressurization time of a test body was reduced dramatically, from
more than 8 seconds to less than 1 second. This improvement demonstrates the feasibility of rapid
surface morphing. Nonetheless, challenges remain: solenoids could not actuate quickly enough to
prevent excess air intake, which led to membrane delamination, and chamber-to-chamber variations
in membrane properties required different pressures to achieve uniform dimple depth. Future work
will focus on accelerating actuation speed, refining the controller to avoid overpressurization, and
developing more consistent membrane materials to ensure reliable performance across all chambers.

16.4 Cavitation-bubble dynamics modeling with application to cavita-
tion susceptibility meters

Katarina Jevtic, Eleanor Anderson-Zych and Eric Johnsen

Cavitation is the phenomenon whereby vapor bubbles form, typically from a gas nucleus, and
oscillate due to pressure changes in liquid flows. This process may lead to noise, vibration, reduced
efficiency, and even structural damage. Predicting the inception of cavitation is critical to a variety
of applications. Cavitation susceptibility meters (CSMs) have been proposed to measure nucleus
sizes. Briefly, these devices consist of a nozzle with converging and diverging sections; given a
sample of the flowing liquid of interest, the device determines whether nuclei are present and
cavitate. However, nucleus sizes and concentrations cannot readily be determined.

Our objective was to use numerical simulations to simulate bubble growth and collapse through
CSM-relevant geometries to determine nucleus sizes expected to cavitation during passage through
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Figure 16.4: Simulated normalized maximum radius as a function of inlet velocity and ambient pressure.

the CSM. From the geometry and given flow conditions (ambient pressure, inlet velocity), the spatial
variation of pressure through the device was converted to a temporal variation. The Rayleigh-
Plesset equation was numerically solved to model the bubble dynamics subjected to this temporally
varying pressure. To investigate particularly violent collapse, we incorporated capabilities for quad-
precision calculations. We computed the corresponding growth of nuclei of different sizes during
passage through the device. Cavitation was defined to occur when the maximum bubble radius
significantly exceeds the initial radius (e.g., tenfold). Maximum bubble sizes, as well as collapse
times, were investigated for a wide range of conditions. The result of this study was a heat map
for maximum bubble size, for a range of nucleus sizes and inlet velocities (Figure 16.4).

The long-term goal of this work is to assist experimental investigations of cavitation inception
with CSMs. For CSM experiments exhibiting cavitation, the plan will be to run the present model
for the relevant flow conditions and geometry. Analysis of the bubble growth and collapse will then
enable the determination of the expected nucleus sizes. To enhance the fidelity of the model, more
sophisticated physics will be incorporated, including compressibility and thermal effects.

16.5 Counterweight and Negative Stiffness Mechanisms for Resonance
Tuning in Pendulum-Based Wave Energy Converters

Stacey Jiang, Binh Truong, Vishnu Vijayasankar and Lei Zuo

The sustainability and stability of marine ecological systems depend on accurately monitoring vari-
ations in ocean chemical and physical properties, including pH, temperature, and salinity. Current
ocean monitoring systems powered by solar energy rely heavily on the weather conditions, while
conventional batteries face the challenge of limited lifespan. Integrating sensors with small wave
energy converters offers a sustainable and reliable power source, enabling continuous data collec-
tion in marine environments. Wave energy converters feature diverse design architectures, including
configurations that employ pendulums within floating structures. However, integrating a pendulum
into wave energy converters is challenging, since the low frequency of ocean waves requires imprac-
tically long arm lengths in traditional designs to form a resonator. To address these obstacles,
we present an integrated approach that incorporates both counterweight pendulum and negative
stiffness mechanisms.

256



CNRE Undergraduate Summer Research Experience 2025

Figure 16.5: Designed prototype of the negative stiffness based Wave Energy Converter.

We investigated the performance of an internal pendulum-based wave energy converter equipped
with two frequency tuning techniques, a counterweight with adjustable arms and magnetic softening
effects, to approach or achieve resonance and thereby increase output power. The natural resonance
frequency of the single pendulum is determined, setting the reference. The effectiveness of each
tuning method, both individually and in combination, is then evaluated. The counterweight adjusts
the gravity restoring torque, while the magnetic softening component introduces repulsive forces
near equilibrium, further reducing the overall system stiffness. As the effective resonance frequency
of the pendulum comes closer to the ocean wave frequency, its oscillation amplitude increases, which
in turn improves the power delivered to the load.

Simulation results from COMSOL demonstrate that negative stiffness over a wide range of
rotation can be obtained by placing two permanent-magnet disks in proximity, with achievable am-
plitudes up to 90 degrees. This effective operating angle can be adjusted by varying the number of
magnets, while the magnetic equivalent torque can be optimized by adapting the gap between the
disks. A prototype has been fabricated (Figure 16.5), and the preliminary experimental results indi-
cate considerable advantages of the counterweight pendulum over its conventional single-pendulum
counterpart. To quantitatively validate our hypothesis, further rigorous experiments are being con-
ducted. Ultimately, we aim to demonstrate that the integration of counterweight pendulum and
negative stiffness concepts can facilitate efficient resonance tuning in small-scale pendulum-based
wave energy converters, resulting in substantial improvement in the maximum power harvested
from ocean waves.

In summary, this work introduces an alternative strategy for achieving tunable resonance in
compact, pendulum-based wave energy converters by combining counterweight and magnetic neg-
ative stiffness mechanisms. By addressing frequency-matching challenges and enabling sustained,
renewable power generation, these innovations expand the potential for reliable, long- term ocean
monitoring beyond existing solutions.
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Figure 16.6: Designed growth loop to study biofouling growth in laboratory environment.

16.6 Effects of Drag-producing Biofouling on the Performance of Ships
Bhumi Kumar, Rodrigo Vilumbrales-Garcia and Harish Ganesh

Biofouling, the growth of marine organisms such as algae and barnacles on submerged surfaces,
poses a significant challenge for marine vessels. These organisms grow on ship hulls, increasing the
surface roughness, making the vessel less hydrodynamic, and requiring additional fuel to go the
same distance. Studying live biofouling presents two primary challenges. The first is that living
organisms do not want to grow in the same way or amount every time. Second, sloughing–the
degradation of a fouling or sample layer during a test–prevents repeatability and invalidates any
data collected. The primary objective of this research is to understand and quantify the effects of
drag-producing biofouling on the performance of ships.

The research had three key focus areas: hydrodynamic testing for synthetic biofouling, creating
a code for the Skin Friction Flow Facility (SF3), and building a growth loop (Figure 16.6). For
hydrodynamic testing for synthetic biofouling, three different materials were explored: carrageenan,
polydimethylsiloxane (PDMS), and alginate. For PDMS, the study investigated three different
ratios of silicone to PDMS (15:1, 7.5:1, 5:1). For alginate, different methods were tested to get it to
fully gelify through Calcium ion interactions. To improve the reliability of drag measurements, a
new code for the Skin Friction Flow Facility (SF3) was written that simultaneously records pressure
at all 10 locations.

We found that carrageenan samples degrade at low velocity values, making it unreliable, as it
leads to inconsistencies in data collection. However, it may lead to a way to study sloughing. In
the tests conducted in the SF3, the flushed PDMS samples at a 10% plate coverage led to a drag
increase of 6% with respect to the smooth plate. The alginate also seems promising, as it was able
to pass the survival tests in the SF3. The research successfully evaluated three different synthetic
materials for future biofouling studies and defined material synthesis and testing protocols. It also
improved the capabilities of SF3 with a new code that will allow for more accurate and reproducible
data. The results from the PDMS testing prove the viability of using synthetic materials to simulate
the drag increase caused by biofouling. The next steps for the research include exploring different
material properties, heights, arrangements, and coverage to better understand and mitigate the
effects of biofouling on ship performance.
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Figure 16.7: (a) Iso-surface of Q-criterion showing similar flow structures in simulation (bottom) compared to ex-
periment (top) around the jet. (b) Velocity profiles at several jet-wake location showing good-agreement with the
experiments. (c) Normalized pressure contour downstream the nozzle showing low pressure vortices where cavitation
inception occurs.

16.7 Simulating Cavitation Inception in Turbulent Jets

Kian Montazery, Mehedi H. Bappy and Krishnan Mahesh

Turbulent jets play a crucial role in numerous engineering applications, but the cavitation phenom-
ena associated with them present significant practical challenges. The flow fields generated by these
jets are characterized by unsteady, multi-scale turbulence with complex vortex dynamics, stochastic
nuclei distribution, and pronounced scale effects. These features greatly complicate efforts to accu-
rately simulate the onset of cavitation using conventional numerical methods. The objective of this
project was to simulate 3D cavitating turbulent jets and apply a recently developed subgrid-scale
(SGS) model to estimate cavitation inception at various grid resolutions. The SGS inception model
uses unresolved subgrid-scale fluctuations to estimate their contribution to fluctuating pressure and
cavitation event rates without substantially increasing computational demands.

The project’s scope encompassed the analysis of trends in cavitation inception across several
velocity ratio between the jet and ambient water (ranging from quiescent to non-quiescent con-
ditions) and Reynolds numbers. Multiple levels for each parameter were systematically tested to
understand their effects on inception behavior. The simulations were validated against experimen-
tal data at different velocities and velocity ratios. The results consistently showed the formation of
low-pressure regions within turbulent shear layers one to two nozzle diameters downstream from the
jet exit—locations particularly susceptible to cavitation. These regions also exhibited the highest
prevalence of subgrid-scale fluctuations, highlighting that ignoring such fluctuations in conven-
tional LES may lead to under-prediction of cavitation risk. Increasing the velocity ratio at a fixed
Reynolds number led to greater turbulence intensity and lower minimum pressures. Importantly,
the radial locations of lowest pressure remained consistent across all test conditions, although the
axial location moved downstream with decreasing velocity ratio.

Additionally, a more detailed validation and scaling study has been designed based on the jet
flow conditions and nozzle geometry across the full range of Reynolds numbers and velocity ratios
considered by Straka et al. (2010). Initial simulations for a specific nozzle geometry and a range of
velocities and velocity ratios were performed, and the results indicated agreement in the observed
trends for cavitation inception with the experiment (Figure 16.7). Future work will include a
scaling study across a wide range of Reynolds numbers, velocity ratios, and nozzle geometries to
comprehensively determine their effect on cavitation inception for different engineering applications.
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Figure 16.8: Modularized PINNs codebase.

16.8 Machine Learning Aided Flow Field Reconstruction from Sparse
Particle Tracks

Daria Skalitzky, Xianzhang Xu and Krishnan Mahesh

Cavitation can erode the blades of marine propellers and increase the vibration and noise of ships.
Instantaneous minimum pressure in the flow field drives cavitation inception. However, the mini-
mum pressure is not accurately obtained from sparse experimental data (PIV/PTV) or simulation
data. Our goal is to apply a physics-informed deep learning approach to reconstruct the full flow
field from sparse particle tracks and accurately capture the minimum pressure.

To implement this model, we developed a modularized Physics-Informed Neural Network (PINNs)
codebase using the DeepXDE library. The framework is summarized in Figure 16.8. The codebase
dynamically adapts to different vortex models and domains through the configuration parameters,
allowing for simple, flexible experimentation. Training is performed using only sparse velocity mea-
surements, and the model predicts the fine-resolution velocity and pressure fields. It was evaluated
with data generated using analytical solutions of three canonical vortex flows: 2D Taylor-Green &
Lamb-Oseen vortex, and 3D Burgers vortex. Using this framework, we carried out a series of nu-
merical experiments to study how the sampled particles affect the prediction results of the pressure
field reconstruction. In particular, we tested how the sampling density and the spatial distribution
(random r and uniform r) affect the model’s performance. Then, to evaluate the robustness of our
PINNs framework under these more realistic conditions, Gaussian noise was added independently
to both velocity and spatial particle measurements. Three noise levels were chosen with standard
deviations of σ = 0.01,0.05,0.1.

The model was able to accurately recover the full pressure and velocity fields in 2D for the
Taylor-Green and Lamb-Oseen flows. The framework was extended to 3D and applied to the
Burgers vortex, which was also accurately reconstructed. The results of the sampling experiments
showed that the uniform-radius sampling strategy produced more reliable reconstructions and in-
creasing the sampling density further improved the accuracy. The noise injections tests showed
that PINNs can tolerate moderate noise and still recover the essential flow features. Though, as ex-
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Figure 16.9: Designed wave energy converter and optimal PTO power at different wave periods.

pected, increasing the noise level led to greater uncertainty in the predictions and larger deviations
from the ground truth minimum pressure. The Taylor-Green and Burgers vortices were especially
robust, with only minor deviations even under heavy noise. Our study showed the importance of
sampling strategy for the Lamb-Oseen vortex, with denser and more uniformly distributed training
particles improving reconstruction accuracy. We also found that PINNs are robust to moderate
levels of noise, though accuracy depends on the type of noise, and the specific vortex.

16.9 Autonomous Hybrid Wind Wave Energy Converter Data Buoy

Justin Song, Jianuo Huang and Lei Zuo

Continuous ocean observation in harsh and ice-covered regions is very costly and requires high
maintenance. Traditional ocean-observing platforms depend heavily on solar energy and frequent
vessel-based maintenance, making them ineffective in high-latitude winters characterized by pro-
longed darkness and heavy ice coverage. Remote coastal regions and the Marginal Ice Zone (MIZ)
suffer from seasonal data gaps that hinder both scientific understanding and operational decision-
making, as instruments lie dormant beneath thick ice or fail outright under crushing loads. These
gaps drive up operations and maintenance (O&M) costs, since each re-deployment requires ice-
breakers or specialized crews, often in dangerous conditions. By contrast, a buoy capable of au-
tonomously harvesting both wave and wind energy promises a continuous, low-O&M power source
that can sustain sensors and communications during ice formation, storms, and periods of darkness,
all of which are essential conditions for year-round ocean observation.

Our solution directly addresses this challenge with a hybrid wind-wave energy–harvesting buoy
featuring a Mechanical Motion Rectifier (MMR) Power Take-Off (PTO) and ball-screw mechanism
that converts bidirectional heave into unidirectional generator rotation. Simultaneously, we inte-
grate a vertical-axis wind turbine (VAWT) that drives the same generator in parallel. This compact
system yields a reliable and continuous output of 100-300 W at the wave condition, sufficient to
power a comprehensive set of environmental sensors, data processors, and a meshed radio frequency
(RF)/acoustic communications network (Figure 16.9). Additionally, a stored battery bank system
is integrated for load leveling and blackout resilience. The onboard electronics manage energy flows,
prioritize critical payloads, and perform self-diagnostics, while the remote health-monitoring sys-
tem alerts operators only when maintenance is necessary, thereby reducing expensive vessel visits.
Communication is enabled by a mesh network, in which each buoy serves as both a sensor node
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Figure 16.10: EM wave scattering over a randomly generated surface and computed autocorrelation of the scattered
waves.

and a relay. Data is dynamically routed via RF or satellite links, to adjust transmission parameters
and maintain reliability even under challenging conditions. Local processing handles basic quality
control and event detection, such as ice-quake threshold breaches, before forwarding compressed
summaries to shore or to neighboring buoys for multi-hop relay. This integrated approach ensures
that critical time-series measurements (e.g., temperature, salinity, wave height, ice thickness) re-
main uninterrupted. A smaller scaled version of the buoy was prototyped this summer, and tested
in the Huron river, where it showcased stability and power generation. With this proof of con-
cept, we can move forward with creating a to-scale version of the prototype and run tank tests to
validate simulations on power generation, stability, and natural frequency for the purposes of final
deployment near the arctic rim.

16.10 Statistical Modeling of Electromagnetic Waves Scattering from
Random Ocean Surface

Ryan Strohman, Behzad Yektakhah and Kamal Sarabandi

A theoretical framework for electromagnetic scattering from arbitrary, random, rough surfaces was
employed to model scattering from the ocean. Potential applications include weather prediction,
remote detection of targets in water, and local vector wind measurements (speed and direction).

Empirical models of the power spectrum of ocean waves were used to generate realistic ocean
surfaces in MATLAB for use in full-wave electromagnetic simulations. The high electric permit-
tivity of saltwater at microwave frequencies was leveraged to simplify calculation of the scattered
fields under plane wave excitation by considering the ocean as an impedance surface. Since we
considered the ocean as a random surface, we generated and simulated 15 different possible ocean
surfaces, which allowed the statistical assumptions present in the scattering theory to be valid.
Furthermore, the surfaces themselves were required to be extremely electrically large (80λ×80λ),
which necessarily increased the simulation time and computational load. Simulation of all surfaces
took about one month.

To verify the validity of the theory for modeling the ocean, various quantities were computed and
compared against theoretical prediction. As an example, for a truly random surface it is expected
that the average scattered field (calculated across all surfaces) tends to zero, which we confirmed
in our simulations. Another example is that the two orthogonal components of the scattered field
(co- and cross-polarization) are statistically independent, which was also confirmed (Figure 16.10).
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Figure 16.11: Optimal airfoil shapes for different lift constraints.

The final component of the project was using the verified statistical models to completely
characterize the total scattered field using only a single measurement - e.g using one co-polarized
field component to calculate the other co-polarized field component. This can be done due to the
fact that these two quantities are not statistically independent, and their interaction is characterized
by a joint probability density function. This part of the project is still ongoing and promising.

16.11 Hydrodynamic Shape Optimization of Hydrofoils and Propellers

Peter Susanto, Mohamed A.S. Abdul-Kaiyoom and Joaquim R.R.A. Martins

The design of hydrofoils and propellers is crucial to the longevity, performance, environmental
impact, and efficiency of seafaring vessels. Multidisciplinary design optimization (MDO) aims to
find optimal shapes for hydrofoils/propellers for various objectives, such as minimizing drag or
maximizing lift.

The University of Michigan’s Multidisciplinary Design Optimization Lab (MDOLab) has de-
veloped a powerful framework for this task, using gradients from the CFD flow solver (ADflow) to
iteratively modify the shape and optimize for a certain objective. However, there are some limita-
tions with this framework, namely the cost per optimization job and the reliance on some in-house
MDOLab packages.

Our work this summer involved exploring deep reinforcement learning (DRL) and its viability
within hydrofoil/propeller MDO. We built a framework for DRL shape optimization of airfoils using
many of the same MDOLab tools. This framework trains an agent to modify the design variables
to find an optimal shape for a target lift coefficient. While training, the agent explores different
airfoil shapes. During the training process, the agent observes and takes action to learn the design
space for mapping. The updated hydrofoil shape for the given action is required to be a valid shape
to run the CFD simulation to get the performance metrics. Oftentimes, these shapes are not valid,
and the CFD simulation fails. Therefore, we developed several methods to enforce the thickness
and curvature constraints at each iteration to obtain a feasible shape (Figure 16.11). This results
in more robust training.
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Figure 16.12: Rapid critical temperature optimization via automatic differentiable Monte Carlo simulations. A
stochastic gradient descent algorithm was implemented on an differentiable Ising model simulator (50x50 square
lattice) to search for the critical temperature at which there is a second order phase transition (with respect to the
specific heat). The final calculated critical temperature was 2.267, which agrees closely with the known analytical
solution 2.269.

16.12 Differentiable Monte Carlo Simulations

Evan Teal, Chenyang Huang, Andrew Li and Venkat Viswanathan

Monte Carlo (MC) methods are essential computational techniques for sampling high-dimensional
spaces and are widely used in the study of physical and chemical systems. Their application
is fundamental in modeling processes such as phase transitions while adhering to fluctuation-
dissipation relationships. Despite their strengths, optimizing MC simulations is difficult due to
inherent stochasticity, making analytical derivations for complex adjoint problems particularly chal-
lenging. The primary objective of this project was to explore, implement, and verify an automatic
differentiable Monte Carlo (ADMC) framework to streamline and automate differentiation within
MC simulations.

Initial efforts focused on reviewing existing methods of traditional & Markov Chain - Monte
Carlo (MC) algorithms and implementing the basic Metropolis algorithm for the Ising Model in
both conserved & unconserved cases, as well as scenarios involving external energy fields (Figure
16.12). A basic Metropolis algorithm was developed for sampling from a Gaussian distribution.
Parallel to these activities, research was conducted into differentiable programming, particularly the
capabilities offered by JAX, to support the development of differentiable MC simulations. Several
challenges were encountered, particularly on convergence and validation of the ADMC objective.
There was limited guidance in existing literature on model training, which necessitated exten-
sive empirical testing and debugging. Compatibility of proposed ADMC objectives with classical
MC and stochastic algorithms was verified, establishing the validity of the framework. A robust
approach was developed to compute first-order gradients of MC observables, using both gradi-
ent computation and averaging over multiple random seeds to ensure consistent gradient descent
performance.

Over the course of the project, significant progress was made in implementing and testing core
MC and ADMC concepts. The work successfully demonstrated convergence-checking criteria for the
Ising Model and Metropolis algorithms, as well as general training strategies for ADMC objectives.
These results confirm the viability of ADMC frameworks for optimizing MC simulations and set
the stage for future research into more complex applications, such as Kinetic Monte Carlo methods
and advanced automatic differentiation techniques.
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Figure 16.13: Left: An SEM image of lotus leaf (top) & modeled surface representation (bottom) with 50 nm nano-
structure spacing (v1). Right: Normalized mean interface height (top-right) and volume of trapped gas (bottom-right)
over surfaces with different nano-structure spacings (v2: 100 nm, v3: 200 nm, v4: 400 nm) at different interfacial
pressure differences (∆p).

16.13 Modeling and Performance Prediction of Natural Superhydropho-
bic Surfaces

Sofie Vos, Mehedi H. Bappy and Krishnan Mahesh

Superhydrophobic surfaces (SHS) are materials that repel water strongly due to surface roughness
and low surface energy. Found in nature on leaves such as lotus, rice, and salvinia, these surfaces
allow for unconventional drag reduction. This project focused on modeling and predicting the
performance of natural SHS by constructing accurate three-dimensional representations of their
micro- and nano-structures and studying how liquid interfaces interact with them under different
environmental conditions.

A variational level-set method was used to generate representations of natural surfaces, begin-
ning with simple cylindrical geometries and progressively adding ellipsoidal and fractal features
to mimic realistic roughness. Simulations were conducted for different canonical SHS and natural
SHS with micro- and nanoscale roughness at multiple interfacial pressure differences ranging from
2 to 300 kPa. For each case, interface statistics such as mean and RMS height, trapped gas vol-
ume, Wenzel roughness, solid fraction, and autocorrelation length were calculated to quantify the
response of the surface.

The results (Figure 16.13) showed that the nanostructures are critical for SHS to trap air and re-
duce drag. Lotus leaves sustained air layers at pressures up to 300 kPa, while rice leaves experienced
an earlier interface collapse. Closer nanostructure spacing was found to improve performance by
increasing trapped gas volume and maintaining interface height, thereby enhancing superhydropho-
bicity. These findings suggest that nanoscale spacing and density of structures play a key role in
drag reduction and provide design principles for bioinspired SHS in engineering applications.
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2025, May 2025, Toulouse, France.

23. L. Silwal, R. Vilumbrales-Garcia, R., A. Sareen. (2025). Surface Roughness Influences Vortex
Interactions and Jet Stability in Pitching Foils in Quiescent Flow. Remote Colloquium on
Vortex Dominated Flows Series, Sept 19, 2025.

24. M. H. Bappy, K. Mahesh, Dynamic Cavitation Inception Modelling in the Subgrid Scale of
Large Eddy Simulation, US-Japan seminar on Two Phase Flow Dynamics, June 2025, Tokyo,
Japan.

25. A. Szabo, K. Mahesh. (2025). Low Reynolds number modal stability analysis of the 6-1
prolate spheroid. 78th Annual Meeting of the APS Division of Fluid Dynamics, November
23–25, Houston, Texas.
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26. M. H. Bappy, K. Mahesh. (2025). A Dynamic Approach to Model Subgrid Scale Cavitation
Inception. 78th Annual Meeting of the APS Division of Fluid Dynamics, November 23–25,
Houston, Texas.

27. X. Xu, D. Skalitzky, K. Mahesh. (2025). Machine Learning–Aided Flow Field Reconstruction
and Minimum Pressure Estimation from Sparse and Noisy Particle Measurements. 78th
Annual Meeting of the APS Division of Fluid Dynamics, November 23–25, Houston, Texas.

28. K. Montazery, M. H. Bappy, K. Mahesh. (2025). Simulation and Modeling of Cavitation
Inception in Turbulent Water Jets. 78th Annual Meeting of the APS Division of Fluid
Dynamics, November 23–25, Houston, Texas.

29. D. Gola, S. Prajapati, K. Mahesh. (2025). Two-way FSI Modeling of Biofouled Surfaces in
Turbulent Flow. 78th Annual Meeting of the APS Division of Fluid Dynamics, November
23–25, Houston, Texas.

30. N. Gupta, K. Duraisamy. (2025). Enforcing Learnability and Model Consistency in Data
Driven Turbulence Modeling – MS273 Advancing Turbulence Modeling with Scientific Ma-
chine Learning Part II of II, SIAM Conference on Computational Science and Engineering,
March 3–7, Fort Worth, Texas.

31. G. J. Wu, S. Anantharamu, K. Mahesh. (2025). Parallel Implementation and Assessment of
Adjoint-Based Data Assimilation with the Hybridizable DG algorithm. 78th Annual Meeting
of the APS Division of Fluid Dynamics, November 23–25, Houston, Texas.

32. V. Agarwal, G. J. Wu, K. Mahesh. (2025). Gradient Based Optimization of Superhydrophobic
Surface Geometry for Drag Reduction. 78th Annual Meeting of the APS Division of Fluid
Dynamics, November 23–25, Houston, Texas.

33. R. Vilumbrales-Garcia, L. Silwal, A. Sareen. (2025). Surface Roughness Influences Vortex
Interactions and Jet Stability in Pitching Foils in Quiescent Flow. Remote Colloquium on
Vortex Dominated Flows Series, Sept 19, 2025.

34. R. Vilumbrales-Garcia, C. Sun, B. Kumar, J. Estrada, H. Ganesh. (2025). Towards inferring
drag produced by patchy, heterogeneous soft biofilms. 78th Annual Meeting of the APS
Division of Fluid Dynamics, November 23–25, Houston, Texas.

35. M. Elsouht, E. G. Callison, R. Vilumbrales-Garcia, H. Ganesh, S. L. Ceccio. (2025). Rough-
ness and the effect of streamers motion on drag in biofilm-like surfaces. 78th Annual Meeting
of the APS Division of Fluid Dynamics, November 23–25, Houston, Texas.

36. M. H. Bappy, A. Madabhushi, K. Mahesh. (2024). Modeling Incipient Cavitation During
Vortex-Vortex Interaction due to Crow Instability. 77th Annual Meeting of the APS Division
of Fluid Dynamics, Nov 24-26, Salt Lake City, Utah.

37. G. J. Wu, S. Anantharamu, K. Mahesh. (2024). An Adjoint-Based Data Assimilation Algo-
rithm using the Hybridizable Discontinuous Galerkin Framework. 77th Annual Meeting of
the APS Division of Fluid Dynamics, Nov 24-26, Salt Lake City, Utah..

38. R. Vilumbrales-Garcia, L. Silwal, A. Sareen. (2024). Effects of Surface Roughness on a
Pitching Foil in Quiescent Flow Conditions. American Physical Society, Division of Fluid
Mechanics, , Nov 24-26, Salt Lake City, Utah.
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2024-2025 Roster

The CNRE roster is provided below. Postdoctoral fellows, graduate students, faculty and
undergraduate student researchers are separately listed along with their contacts and re-
search topics.

Postdoctoral Scholars/Graduate Students∗

Name Email Research Area

Mehedi H. Bappy mehedib@umich.edu Multiphase flow modeling
Daniel Esterkin∗ dester@umich.edu Kirigami materials
Divyanshu Gola divyans@umich.edu Biofouling simulation
Niloy Gupta∗ niloy@umich.edu ML & data-driven modeling
Mohamed A.S. Abdul-Kaiyoom arshsaja@umich.edu Optimization & AI
Seungnam Kim skimnaoe@umich.edu Cavitation simulation
Andrew Li andreli@umich.edu Battery simulation
Eva Pontrelli∗ epontrel@umich.edu Vapor jet printing & hydrophobicity
Lokesh Silwal lokeshsi@umich.edu Experimental flow control
András Szabó andrasz@umich.edu Flow stability & asymmetry
Binh Truong drtruong@umich.edu Wave energy converter design
Rodrigo Vilumbrales-Garcia rodrigga@umich.edu Biofouling experiments
Zhigang Wei zgwei@umich.edu AI & modular construction
Gao Jun Wu gaojunwu@umich.edu Adjoint–based data assimilation
Xianzhang Xu xianzhx@umich.edu ML-enabled simulation
Behzad Yektakhah byekta@umich.edu Electromagnetics modeling
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Faculty

Name Department

Steve Ceccio NA&ME, Mechanical Engineering
Pingsha Dong NA&ME
Karthik Duraisamy Aerospace Engineering
Jon Estrada Mechanical Engineering
Harish Ganesh NA&ME
Eric Johnsen Mechanical Engineering
Krishnan Mahesh NA&ME
Joaquim R.R.A. Martins Aerospace Engineering
Kamal Sarabandi Electrical Engineering & Computer Science
Anchal Sareen NA&ME
Max Shtein Materials Science
Venkat Viswanathan Aerospace Engineering
Lei Zuo NA&ME
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Undergraduate Students

Name Email Research Area

Veer Agarwal veeraga@umich.edu Optimization of drag reduction
Amy Fahmy amyfhmy@umich.edu Denticle-inspired control
Teagan Fynan tfynan@umich.edu Soft hydrogels
Manasa Gollapalli manasavg@umich.edu Actuation for morphable surfaces
Sunaad Gurajada sunaadg@umich.edu Bubble collapse modeling
Katarina Jevtic kjevtic@umich.edu Cavitation bubble modeling
Stacey Jiang jstace@umich.edu Wave energy converter
Bhumi Kumar bhumik@umich.edu Biofouling experiments
Jackson Lewis jadlewis@umich.edu Turbidity currents
Kian Montazery kianm@umich.edu Cavitation inception LES
Megan Pribak mmpribak@umich.edu Underwater current energy harvesting
Vaibhav Ramaseshadri vaibhavr@umich.edu Cloud cavitation
Daria Skalitzky dskalit@umich.edu ML & data assimilation
Justin Song jjiasong@umich.edu Wind-wave observation buoy
Ryan Strohman strohman@umich.edu Electromagnetics modeling
Chelsea Sun sunchel@umich.edu Synthetic algae for biofouling
Peter Susanto psusanto@umich.edu ML & optimization
Evan Teal evanteal@umich.edu Monte-Carlo simulations
Sofie Vos sevos@umich.edu Natural superhydrophobic surfaces
Jack Zaeske jzaeske@umich.edu Physics-informed neural networks
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